
Yamauchi et al.: SC-driven multiple substorm onsets (2005JA011285 ver. 051220)  page 1 

Unusually Quick Development of a 4000 nT Substorm During the 
Initial 10 Minutes of the 29 October, 2003 Magnetic Storm   
 
M. Yamauchi1, T. Iyemori2, H. Frey3, and M. Henderson4 
 
1. Swedish Institute of Space Physics, Kiruna, Sweden 
2. Data Analysis Center C2 for Geomagnetism and Space Magnetism, Kyoto 
University, Kyoto, Japan 
3. Space Science Laboratory, University of California, Berkeley, CA, USA 
4. Los Alamos National Lab, Los Alamos, NM, USA 
 
Abstract 
Global geomagnetic field data, IMAGE FUV data, and many other in-situ observations 
are presented for the initial 10 minutes of the magnetic storm starting 29 October 2003 
at around 06:10 UT.  Within one minute after sudden commencement (SC), two 
independent strong westward ionospheric electrojets (> 2000 nT) at the inner 
magnetospheric region started simultaneously, one in the evening-midnight sector and 
the other in the morning sector.  Both activities expanded and accompanied auroral 
expansion.  The locations (inner magnetosphere), morphologies (expansion), and 
intensities (> 2000 nT) of both activities fall into substorm expansive phases.  Having 
such simultaneous independent 2000 nT level expansions makes this event unique.  The 
interplanetary magnetic field condition before the SC was not favorable in causing an 
AL<-2000 nT activity.  A timing analyses indicates that these strong westward 
electrojets were most likely triggered by the interplanetary shock, with the triggering 
location not farther than the geosynchronous distance.  They are also probably 
maintained by the direct energy pumping from the solar wind because cross-tail current 
derived from the closely located GOES-10 and Polar did not decrease very much during 
this period.  A local but even stronger geomagnetic (nearly 4000 nT) and auroral 
activity started only 6 minutes after the start of SC at post-midnight where and when the 
above two expanding activities met each other, although the relation between the onset 
of 4000 nT activity and the preceding expansions is not clear.  The suddenness of this 
third activity (3000 nT change within 2 minutes) is another unique feature.   
 
(Yamauchi, et al., J. Geophys. Res., 111(A4), A04217, doi:10.1029/2005JA011285, 
2006. Copyright 2006 by the American Geophysical Union.) 
Key words: 2790 Substorms, 2437 Ionospheric dynamics, 2784 Solar 
wind/magnetosphere interactions, 2409 Current systems;  initial phase; magnetic storm; 
substorm onset. 
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1. INTRODUCTION 
 
Major magnetic storms normally start with sudden commencement (SC: a sudden 
increase in geomagnetic field or the Dst index at dayside stations due to the 
compression of the magnetosphere) followed by a quick development of large negative 
changes in the Dst index toward its negative peak within several hours, and a long 
decay of Dst decrease which takes a few to several days.  At high latitudes, large 
substorms take place shortly after the SCs, with typical delay time of tens of minutes 
from the initial rise of SC before the onset of the substorm expansive phase.  The 
geomagnetic activity related to the substorm expansive phase normally propagates from 
the nightside to the dayside. 
 
This is the standard view right after large SCs [e.g., Chapman and Bartels, 1940], and 
individual storms can deviate from this.  Some SCs are followed by substorm onsets 
only several minutes after [Akasofu and Chapman 1972].  Here we use the term 
"substorm" in the classic sense [Akasofu, 1964], i.e., a combination of large-scale 
phenomena lasting tens of minutes: sudden auroral brightening, its poleward expansion, 
and simultaneous sudden decrease of horizontal component of the ground geomagnetic 
field more than 500 nT caused by a strong and expanding westward electrojet.  The 
onset of such expansion (substorm onset) takes place in the nightside sector with 
highest probability in the pre-midnight region, and its triggering mechanism remains a 
controversial issue in magnetospheric physics [see e.g., Akasofu, 2004; Ohtani, 2004; 
Lyons and Wang, 2004; and references therein]. 
 
%%%%%% Figure 1 %%%%%% 
 
The large magnetic storm starting at around 06:10 UT on 29 October 2003 (see Dst in 
Figure 1) shows a slightly different behavior from the standard storms [Lopez et al., 
2004].  For example, Dst shows three unusual peaks, indicating that the initial activity 
could have died away if the second period of large southward interplanetary magnetic 
field (IMF) not started at around 18 UT (data not shown here).  The continuous activity 
seen in the AL index (Figure 1) between the Dst peaks might provide an important clue 
in understanding the storm-substorm relation [e.g., Kamide et al., 1998; Ohtani et al., 
2001; and references therein] because the peaks of Dst correspond precisely to peaks of 
AL with extremely large values (nearly -4000 nT) and strongly southward IMF (more 
than -20 nT).  However, we do not discuss this problem in this paper. 
 
We here focus on the first 10 minutes after the start of SC, i.e., the initial development 
of the storm because of its unusual behavior.  Three onsets of strong westward 
ionospheric Hall current (electrojet) together with auroral brightening took place within 
this short interval, and the activity levels of these westward electrojets are quite high, 
reaching 2000 nT deviations of the geomagnetic horizontal (H) component for the first 
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two activities within 5 minutes after the start of SC, and nearly 4000 nT for the last 
activity within 10 minutes after the start of SC.  Such a quick and extremely large 
development of multiple current systems immediately after the start of SC has never 
been reported.  We examined 10.5 years data of final AE (with error-checked calibrated 
data from all 12 stations) from January 1978 to June 1988, and found only 32 days of 
AL<-2000 nT, with none of the events registered as quickly as the present case after the 
start of SC.  Therefore, it is important to describe the minute-to-minute development of 
the present activity using as many data sets as possible.  This is the main purpose of this 
paper.   
 
Nearly simultaneous global intensification of the aurora and the westward electrojet in 
response to a solar wind density increase (pressure pulse) is found during the January 
1997 storm event [e.g., Shue and Kamide, 1998; Zhou and Tsurutani, 1999; Zesta el al., 
2000].  Zesta el al. [2000] suggested that this activity is not a standard substorm 
although the observed auroral and geomagnetic signatures belong to the classic 
definition of the substorm expansion phase.  Since the majority of the substorm models 
do not allow multiple onset locations of the expansive phase, it is wise to discuss this 
type of activity separately from the ordinary substorm.  Then the question arises on 
what are differences and similarities between these nonstandard substorms and the 
standard ones.  The question includes on the morphology of the substorm development 
(e.g., pseudo-breakup and ordinary breakup), the energy flow (loading-unloading and 
directly-driven problem), and the triggering mechanism. 
 
To answer the question one has to examine as many nonstandard examples as possible 
because only few examples have been reported on this type of substorms onset, i.e., the 
nearly simultaneous global onset of the auroral intensification/expansion as the arrival 
of the interplanetary shock or pressure pulse including the SC.  With reported few 
examples, the sudden auroral intensification in response to the solar wind pressure pulse 
show a different electron spectrum from those during the ordinary substorm [Chua et 
al., 2001; Boudouridis et al., 2003; Meurant et al. 2003].  However, none of the reported 
examples registered AL<-800 nT except for the January 1997 event that registered 
nearly -1500 nT of geomagnetic deviation [Shue and Kamide, 1998].  The majority of 
the events are auroral intensification without strong westward electrojet [Zhou et al., 
2003].  Therefore, the present case provides a unique example of this type of 
phenomena. 
 
We collected data from the ground-based magnetometers, IMAGE satellite (FUV), 
geosynchronous satellites (LANL particle and GOES magnetic field), and the ISTP 
satellites (field data).  In section 2 we show the time sequence how the interplanetary 
shock passed through the interplanetary space and the magnetosphere with extremely 
fast propagation velocity (nearly 2000 km/s).  This information is used in deriving the 
arrival time of the shock on the Earth, near-Earth plasma sheet (several to 10 RE, 
candidate location for the current disruption [Lui, 2004; and references therein]), and 
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the near-Earth magnetic neutral region (10-30 RE, candidate location for the magnetic 
reconnection [Nagai and Machida, 1998; Asano et al., 2004]). In section 3 we show the 
development of the substorms (in the classic definition mentioned above) in the 
ionosphere and conjugating geosynchronous orbit.  These data are further discussed in 
terms of the timing and mapping in section 4.  Timing information limits the candidate 
triggering location of the present nonstandard substorm, whereas the mapping relation 
limits the magnetospheric source of the morning activity. 
 
 
2. ARRIVAL OF INTERPLANETARY SHOCK 
 
Reliable solar wind data is not available for this event because the extremely high 
particle flux the day before [Lopez et al., 2004] upset the plasma instruments of SOHO, 
ACE, Geotail, and WIND spacecraft.  Therefore, only the arrival times of the 
interplanetary shock obtained by the magnetometer data can provide the average 
propagation velocity of the shock.  Below we describe the time sequence of shock 
propagation near the Earth with time resolutions of 10 sec or better except for ACE 
(with 16-seconds resolution). 
 
%%%%%% Figure 2 %%%%%% 
 
Figure 2 shows the IMF data observed by the ACE and Geotail spacecraft.  The ACE 
spacecraft at 221 RE upstream of the Earth detected the arrival of shock (increase of 
total |B|) at around 05:58:20 UT (16s resolution) followed by dawnward IMF (BY = -30 
nT) for more than 10 minutes.  The Geotail spacecraft at 26 RE upstream of the Earth 
detected the shock at around 06:09:40 UT.  From these timings, the solar wind velocity 
is estimated as 1900-2000 km/s and the arrival of the shock at the Earth is estimated at 
around 06:11 UT.  In fact the WIND spacecraft detected the arrival of deformed shock 
or plasmoid at around 06:19:30 UT at 156 RE downstream of the Earth (data are not 
shown), which is consistent with the 2000 km/s velocity. 
 
%%%%%% Figure 3 %%%%%% 
 
In the magnetosphere, LANL geosynchronous satellites detected the arrival of this 
shock at around 06:11 UT as shown in Figure 3.  Figure 3a and Figure 3b show fluxes 
of energetic protons and electrons, respectively, from six LANL satellites in 10-seconds 
resolution.  Two of the LANL satellites were located near noon (LANL-02A at 11 LT 
and LANL-97A at 13 LT) at the shock arrival and they detected sudden increase in 
energetic proton fluxes and short spikes in energetic electron fluxes at 06:10:50 UT.  
The electron spike is immediately followed by decrease in fluxes.  The increase of 
fluxes is probably due to the shock passage.  The proceeding changes of proton flux and 
electron flux in opposite sense suggest that the satellite went into the other region with 
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electron/proton ratio quite different (such as the magnetosheath or a larger L-shell 
region) due to the strong compression of the magnetosphere. 
 
The sudden change in energetic particle fluxes is registered 20 sec later at 06:11:10 UT 
at 07 LT (LANL-01A), 30 sec later at 06:11:20 UT at 16 LT (1994-084) and 04 LT 
(1990-095), and 40 sec later at 06:11:30 UT at 19 LT (1991-080).  The time sequence 
illustrates the propagation of the shock effect via both morning and evening sectors with 
a velocity of nearly 2000 km/s, the same as the solar wind velocity. 
 
%%%%%% Figure 4 %%%%%% 
 
These timings match with the shock arrival observed by GOES geosynchronous 
satellites at 21 LT and 01 LT as shown in Figure 4.  Both GOES-10 at 225 long (thin 
lines) and GOES-12 at 285 long (thick lines) detected sudden stretching of magnetic 
field (decrease of poleward component and increase of tailward components) at around 
06:11:40 UT with GOES-12 at 01 LT preceding by several seconds GOES-10 at 21 LT.  
Figure 4 also shows the magnetometer data from Polar satellite at 21 LT in broken lines.  
Its location (21 LT, or XGSM = -5.3 RE, YGSM = +4.8 RE, ZGSM = -0.7 RE) was only 1 
RE away from GOES-10 (21 LT, or XGSM = -5.1 RE, YGSM = +4.0 RE, ZGSM = -1.5 RE) 
at this particular time.  Polar detected the shock arrival at 06:11:30 UT. 
 
Magnetometer data from Cluster (not shown here), which was located in the southern 
lobe (Z=-10 RE, X=0 RE), also detected the arrival of the shock at around 06:11:20 UT 
in 10s resolution [Tim Horbury, private communication, 2005].  This is the same timing 
as that detected by the LANL geosynchronous satellite at 16 LT.  Both the Cluster and 
Polar spacecraft registered increases of 10 keV range ions with 10 to 20 sec delay from 
the magnetic signature, and in this sense the arrival times of shock at LANL satellites 
could be slightly (few to 10 sec) earlier than those described above, but this is not very 
essential. 
 
%%%%%% Figure 5 %%%%%% 
 
The arrival of the shock, or the SC, is recognized in SYM-H starting at 06:11 UT with 
one-minute resolution in Figure 1 (bottom panel).  For higher time resolution, Figure 5 
shows 1s-resolution geomagnetic field data at the Kiruna (07 LT, 65° GMLat), Urumqi 
(12 LT, 34° GMLat), Memanmetsu (16 LT, 35° GMLat), and Kanoya (15 LT, 22° 
GMLat) stations between 06:11:00-06:11:30 UT (30 sec data).  All stations registered 
the start of the SC-associated ∆H (horizontal component) at 06:11:21 UT (this means 
06:11:30 UT in 10s resolution, and 0611 UT in one-minute resolution as is recognized 
in SYM-H in Figure 1).  The simultaneous arrival time is not very surprising if one 
considers the cavity mode propagation, i.e., electromagnetic wave propagation in the 
Earth-ionosphere waveguide [Araki et al., 1997].  A magnetic signal may propagate 
with the speed of light in the non-conducting atmosphere sandwiched by the conducting 
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ground and ionosphere.  On the other hand, the sweeping velocity of the shock in the 
magnetosphere at around 0.3 RE/s is also consistent with the nearly simultaneous arrival 
time in this particular case. 
 
%%%%%% Figure 6 %%%%%% 
 
Figure 6 summarizes how the interplanetary shock traveled.  The arrival time is quite 
ordered from upstream to downstream with a velocity of 2000 km/s for both outside and 
inside the magnetosphere.  This suggests that the shock simply swept from the upstream 
to the downstream rather than along the magnetic field.  Such a simple propagation 
sometimes happens for large SCs [e.g., Petrinec et al., 1996].  The consistent 
propagation velocity throughout the upstream interplanetary space, the magnetosphere, 
and the downstream interplanetary space (≈0.3 RE/s) allows us to estimate the arrival 
time of the shock in 10-seconds accuracy in the near-Earth tail where no satellite was 
located. 
 
 
3. SUBSTORM DEVELOPMENT 
 
In this section we examine the minute-to-minute development of the geomagnetic and 
auroral activities during the initial 10 minutes from the start of SC.  We examine the 
worldwide ground-based magnetometer data, geostationary satellite data, and the 
optical data from the IMAGE satellite. The actual geomagnetic disturbance is larger 
than what is indicated by AL with a more complicated sequence.  SYM-H (which is 
equivalent to Dst) is positive during this period as shown in Figure 1, and in this sense it 
is during the initial (compression) phase of the magnetic storm. 
 
3.1. GEOMAGNETIC DISTURBANCES 
 
Immediately following the start of SC at around 06:11:20 UT, both the ASY-H and 
ASY-D indices started to deviate at 06:12 UT as shown in Figure 1, indicating a 
development of the ionospheric current (note that the effect of the field-aligned current 
and the Pedersen current are mostly cancelled out).  At high latitudes, the AU index 
shows the SC amplitude of > +1000 nT at 06:12 UT, and this is immediately followed 
by a large development of negative AU and AL.  Although AL and AU in Figure 1 are 
provisional ones derived from limited stations (coverage is only over the nightside from 
evening to late morning at 6 UT) without data qualification, these large-scale variations 
are real.  Thus, the ionospheric current system has started to develop immediately after 
the shock arrival.  Let us examine this in more detail by looking at data from individual 
stations.   
 
%%%%%% Figure 7 %%%%%% 
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Figure 7 shows geomagnetic X (or H) component at ground stations all over the world 
during 06:00-06:30 UT on 2003-10-29.  Resolution is one minute (60-seconds averages 
around the turning of minutes, i.e., average from 30th second to 29th second) except 
Kiruna (KRN) at the bottom of Figure 7a that is in 1-second resolution.  Figure 7a 
shows data at stations in the auroral zone (magnetic latitude is around 62-70 GMLat), 
Figure 7b shows data at stations equatorward (magnetic latitude <62 GMLat), and 
Figure 7c shows data at stations poleward (magnetic latitude >71 GMLat). 
 
During this period the geomagnetic north pole was located in the local midnight (23-0 
LT).  This fact made the actual dipole tilt angle about 22~23 degrees with respect to the 
solar wind during this short period.  Such a tilt may cause an inter-hemispheric 
asymmetry on the electric current system due to, e.g., mapping configuration of the 
geomagnetic field and the conductivity difference.  In fact, a strong inter-hemispheric 
asymmetry is recognized in the geomagnetic disturbances, i.e., between the AIA station 
(296 long and -55 GMLat) and the OTT station (284 long and +56 GMLat) although 
both stations are located in the midnight sector.  Therefore, it is wise to first examine 
mainly the data from the northern hemisphere where we have much better coverage of 
the ground station than the other hemisphere, and later consider the inter-hemispheric 
relation where such examination is useful. 
 
The SC is registered at 06:11 UT or 06:12 UT at most of the stations.  In KRN's 1-
second resolution data, the peak value is as high as ∆Bx = +450 nT registered at 
06:12:02 UT.  Right after the SC recognition, a large negative bay of ∆Bx started at 
high latitudes during the initial (compression) phase, i.e., when SYM-H is positive.  In 
the 1-second resolution data at the KRN station, ∆Bx is more than -500 nT within 60 
sec, and -1000 nT within 6 minutes after the SC peak.  Similarly, large negative 
deviations of ∆Bx were recognized in other stations immediately after the SC peak.  At 
already 06:13 UT when KRN registered -500 nT, many other stations also registered -
500 nT deviations in the one-minute average values, including the evening-midnight 
(CMO, YKC, PBQ) and the morning (SOD, ABK, LRV) stations.  The largest 
deviations at that time are registered at CMO (212 long), PBQ (282 long) and LRV (338 
long) in the auroral zone (Figure 7a). 
 
The timing of the onset of the evening-midnight activity is estimated to be 06:12 UT in 
one-minute resolution, as is seen at the CMO, MEA (247 long) and PBQ stations.  This 
onset timing is also valid in the southern hemisphere as is seen at the AIA station which 
shows a 500 nT change from 06:12 UT.  The negative ∆Bx deviation at 06:12 UT at 
many other evening-midnight stations could be either the onset of the activity or a part 
of the SC signal. 
 
The large ∆Bx deviation registered at the midnight PBQ station (1500 nT at 06:15 UT 
and 2000 nT at 06:16 UT) is interpreted as a part of the evening-midnight activity (seen 
at around 65 GMLat) because the stations just a few degrees north (BRW, YKC, and 
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FCC) consistently detected the same smooth development with a few minutes delay.  
The ∆Bx deviation at all pre-midnight stations reached their peaks at 06:16-06:18 UT 
and quickly decayed afterward.  Limiting the data from the latitude range 68-69 GMLat, 
∆Bx at YKC (246 long) reached the peak earlier than FCC (266 long) or BRW (203 
long). 
 
On the other hand, large ∆Bx deviation in the morning sector shows a different 
development from those of the evening sector.  For example, ∆Bx variation at the LRV 
(338 long), LER (359 long), and LOV (18 long) stations shows step-like change 
between 06:11-06:14 UT with sustained activity after the peak, and this is quite 
different from the smooth one-peak ∆Bx variation at the pre-midnight stations 
mentioned above.  Thus, the ∆Bx development in the morning sector is most likely 
independent of that in the evening-midnight sector.  A similar independency is also 
found in both the sub-auroral region and the polar cap. 
 
Furthermore, the amplitude of ∆Bx at LRV is larger than that of NAQ or FCC (they are 
located west of LRV) at the same latitude until 06:17 UT, and is even larger than that of 
PBQ until 06:16 UT (2000 nT already at 06:15 UT).  Such separation is also seen 
outside the auroral region.  The ∆Bx deviation is larger at late morning than at early 
morning both in the sub-auroral region (e.g., LOV and NUR) with negative ∆Bx and in 
the polar cap (e.g., BJN) with positive ∆Bx during 06:12-06:14 UT.  We see the 
minimum of the activity at NAQ (315 long) in the auroral region, and STJ (307 long) 
and VAL (350 long) in the sub-auroral region.  Therefore, there is an extra kernel of 
activity in the morning sector at around 04 LT (corresponding to 05~06 MLT).  The 
independence of the morning activity is also seen in IMAGE satellite data (see section 
3.3).  Therefore, although the longitudinal coverage of the geomagnetic stations is not 
dense enough to give a concrete picture, the double-location (morning and evening) of 
the enhancement is not an artifact of the finite number of the geomagnetic stations. 
 
The onset time of the morning activity is no later than 06:13 UT, i.e., at the next data 
point after the SC is recognized.  Some sub-auroral stations (e.g., BFE and NUR) show 
∆Bx as large as 100 nT already at 06:12 UT, but we cannot separate the SC effect from 
this ∆Bx deviation.  During the first 5 minutes after the start of SC, all the morning 
stations in Figure 7 showed stepwise but steady development of ∆Bx except for an 
overshoot at 06:13 UT in northern Scandinavia (TRO, ABK≈KRN, and SOD).  Such a 
monotonic large-scale development indicates an expansion of an active region if one 
looks at the number of stations that registered ∆Bx < -500 nT.  For example NAQ (315 
long) registered ∆Bx < -500 nT two minutes after LRV (338 long) at the same latitude.  
In this respect, the expansion is seen in the latitudinal direction for the evening-
midnight activity, and in the longitudinal direction (anti-sunward) for the morning 
activity.  Such a quick large-scale response with large amplitudes is not very common at 
this local time. 
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These large negative deviations of ∆Bx in the morning sector are not the signature of 
the compression because compression should cause a positive ∆Bx instead.  In fact a 
positive spike of ∆Bx is recognized in the KRN 1-second resolution data in Figure 7a.  
It is also different from the signature of an anti-sunward (poleward on the ground) 
traveling vortex [e.g., Friis-Christensen et al., 1988].  We do not recognize any traveling 
bipolar signatures, but a large-amplitude standing PC-5 pulsation (signature of 
oscillation of the geomagnetic field line), in the Norwegian magnetometer chain at 07 
LT (not shown here) as well as the Greenland magnetometer chain at 03 LT [J. 
Watermann, private communication, 2005].  The intensity of 2000 nT at the LRV 
station can hardly be explained by the vortex.  Therefore, the data right after the start of 
SC is interpreted as an instantaneous development of a strong westward ionospheric 
electrojet in the morning sector.  A westward electrojet in the morning sector means a 
sunward convection, and is not directly pushed by the solar wind but rather driven by 
the increasing ionospheric electric field, or equivalently the magnetosphere-ionosphere 
current system. 
 
In addition to the westward electrojet, one can recognize at the BJN (71 GMLat) and 
HRN (74 GMLat) stations a large positive ∆Bx, i.e., eastward electrojet (or anti-
sunward convection).  The Norwegian magnetometer chain at 07 LT (not shown here) 
shows that a convection reversal at around 68-69 GMLat started to develop already at 
06:13 UT, i.e., at the next data point after the SC was recognized. The pair of westward 
and eastward electrojets (or sunward and anti-sunward convection) indicates a 
development of a current system with three field-aligned currents.  One is "downward" 
current from the magnetosphere into the ionosphere at around the convection reversal 
(67-71 GMLat), and the others are "upward" currents from the ionosphere to the 
magnetosphere at the low-latitude boundary of the westward electrojet and at the high-
latitude boundary of the eastward electrojet.  The downward current at around the 
convection reversal in the morning sector is traditionally called the Region 1 current in 
both hemispheres [Iijima and Potemra, 1976; Friis-Christensen et al., 1985; Potemra 
1994 and references therein], and normally flows inside the low-latitude boundary layer 
[Woch et al., 1993].  While the upward field-aligned current equatorward of the 
westward electrojet is called the Region 2 field-aligned current, the other upward field-
aligned current has many names partly because it changes dynamically.  We discuss the 
current system further in section 4.2. 
 
The morning activity expanded westward toward midnight along about 70 degrees, 
while the evening-midnight activity expanded poleward from 65 degrees toward higher 
latitudes.  As the result of expansion, these two regions of the westward electrojets 
merged at the midnight high-latitude sector in the spatial resolution of the existing 
ground stations.  The timing of this merging (06:16-06:17 UT) coincides with the onset 
of a sharp change of ∆Bx at the IQA station (291 long = 0130 LT = 02 MLT, 74 
GMLat) with ∆Bx < -3000 nT at 06:17-06:18 UT.  This is the largest ∆Bx during the 
first 20 minutes although only a small positive deviation was registered between 06:11-
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06:16 UT at this station.  When IQA was experiencing this sharp development, the 
evening-midnight activity in the auroral region at < 69 GMLat already started to decay, 
making the IQA station a single point of outstanding high activity. IQA is located on the 
same meridian as GOES-12 during this period (cf. Figure 4), and GOES-12 detected an 
unusual sharp change in the magnetic field as described in the next subsection. 
 
3.2. GEOSYNCHRONOUS SATELLITE DATA 
 
As shown in the previous subsection, the ground-based magnetometers detected the 
onset of the 2000 nT level westward electrojet at 06:12 UT in one-minute resolution in 
both hemispheres.  At the same time, the geosynchronous satellite in the midnight 
sector detected the substorm signature.  Both GOES-10 and GOES-12 detected the 
arrival of the shock at around 06:11:40 UT as a faint decrease in elevation angle (inc = 
atan(HP/HE)), which means a stretching of the geomagnetic field.  This is immediately 
followed by a recovery of elevation angle starting at around 06:12:00 UT in both the 
GOES-12 (01 LT) and GOES-10 (21 LT) data as shown in Figure 4.  Recovery of the 
elevation angle is normally used as the signature of a dipolarization [H. Singer, 
privation communication, 2005].   
 
Accordingly, the polar angle (dip = acos(HP/|B|)) in the GOES-12 data also increased 
after the shock arrival and decreased after 06:12:00 UT.  However, the behaviors of the 
elevation angle and the polar angle are quite different in the GOES-10 data.  This is 
because the cross-tail current sheet passed through the satellite at 06:12:10 UT and 
06:13:20 UT as is seen from the sign of the Earthward field.  In fact the elevation angle 
behaved quite differently between GOES-10 and GOES-12.  In this case, one cannot 
really discuss the dipolarization or the plasma sheet thinning from the elevation angle 
only. 
 
Fortunately, one can estimate the variation of the total cross-tail current near GOES-10 
because GOES-10 and Polar were located within 1 RE distance of each other during this 
period.  The difference in the magnetic field between these two spacecraft roughly gives 
the total electric current between the spacecraft according to the Ampere's law [Iijima 
and Potemra, 1976].  Both satellites are located east of CMO station and west of the 
other stations (cf. Figure 7b) that detected the ground onset of the evening-midnight 
activity at 06:12 UT. 
 
Let us concentrate on the initial two minutes after the shock arrival.  Note that the value 
during the short gap in the plot of Polar data (06:11:40 - 06:12:20 UT) is rather smooth 
(without extra peaks) in the unqualified plot (not plotted here), and we do not lose so 
much information during this 40 sec.  The difference in the eastward fields between the 
satellites showed a large variation, from +20 nT (we take Polar minus GOES-10) at the 
shock arrival (06:11:40 UT) to -30 nT at 06:12:20 UT, -60 nT at 06:13:00 UT, and -10 
nT at 06:14:00 UT.  The difference in the Earthward fields between the satellites also 
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showed a large variation, from +70 nT at the shock arrival to +150 nT when the current 
sheet moved the north of GOES-10 at 06:12:20 UT, +100 nT at 06:13.00 UT, and +80 
nT at 06:14:00 UT.  The difference in the poleward fields between the satellites showed 
the smallest variation, i.e., -10 ~ -20 nT all the time from the shock arrival.  
 
As a total, the Polar magnetic field became more sun-pointing than the GOES-10 
magnetic field during the first minute after the shock arrival, and this difference is 
roughly maintained afterward.  Since Polar was located north of GOES-10, this 
immediately means an increase of duskward cross-tail current between the spacecraft.  
The observed increase of the current is caused either by the actual increase of the 
current intensity or by the north-south motion of the existing non-uniform current sheet.  
In the former case, the magnetic field at 21 LT was more tail-like at 06:12:20 UT than 
at the shock arrival.   
 
No matter which is the case, we cannot conclude any dipolarization between 06:11:40 
UT and 06:12:20 UT although the elevation angle drastically increased at GOES-10.  
This result agrees with the electric field data of the Polar satellite although only the 
component in the spin plane is measured (not shown here).  The electric field shows a 
short bump of 20 mV/m at around 06:12:15 ~ 06:12:30 UT but nearly zero before 
06:12:15 UT except the Z (poleward) component that started to deviate at 06:12:00 UT.   
 
The largest decrease of the current between the two spacecraft is observed between 
06:13:00 and 06:14:00 UT.  Correspondingly, a large deviation of the electric field 
started from 06:13:00 UT toward the peak of 40~50 mV/m at around 06:14:00 UT.  
This indicates a disruption of the current by the anomalous resistively at 21 LT.   
 
Later at 06:16:40 UT, GOES-12 registered a sharp increase of all components (HN, HP, 
and HE) with a short preceding spiky decrease.  This is the same timing as the beginning 
of the ∆Bx = -4000 nT geomagnetic deviation at the IQA station, which is located at the 
same meridian as GOES-12.  GOES-10 did not observe this signature (it instead 
detected a short positive spike 30 sec later).  The sharp decrease of ground geomagnetic 
field (horizontal component) is also a local phenomenon as described in section 3.1.  
Both the ground and the satellite data indicate that this is a local independent onset of a 
new activity and is not a simple extension of previous activities. 
 
Let us also examine the morning activity.  In Figure 3, the LANL-01A satellite located 
at 07 LT detected several spikes during the first several minutes after the shock arrival 
at 06:11:10 UT. If these multiple spikes are caused by the passage of the shock, we 
should also detect a passage of magnetic vortex at ground, but this was not the case.  
Therefore, these multiple spikes are most likely associated with the large ∆Bx (or 
westward electrojet) in the morning stations.  On the other hand, this is less likely 
related to the cusp where we sometimes observe energetic particles [Kremser et al., 
1995].  Although the strong IMF BY moves the cusp in either morning side or afternoon 
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side at high-latitude and its conjugate region, this effect is anti-symmetric, i.e., a 
dawnward IMF BY moves the northern cusp prenoon and southern cusp postnoon.  That 
makes the equatorial region dawn-dusk symmetric.  However, LANL detect the 
multiple-peaks only at prenoon (LANL-01A) but not postnoon (LANL-02A).  Thus the 
LANL data indicates an exclusive morning activity.  It is possible that a locally-closed 
current system between the ionosphere and the plasma sheet in the morning sector 
caused both the ground ∆Bx and multiple spikes at the LANL-01A satellite. 
 
3.3. IMAGE FUV DATA 
 
%%%%%% Figure 8 %%%%%% 
 
Figure 8 shows a sequence of IMAGE-FUV [Mende et al., 2000] over the southern 
hemisphere during the initial phase of this magnetic storm.  At 06:11:40 UT (Figure 8a), 
only the residual from the previous auroral arc (an oval in the entire morning and a 
bright region in the midnight sector from which a polar arc extends) was recognized.  At 
06:13:40 UT (Figure 8b), the midnight spot and the morning arc were suddenly 
intensified.  The former timing corresponds to the time when the shock is passing 
through the magnetosphere, and the latter timing corresponds to the beginning of the 
large negative ∆Bx registered at both the morning and the evening geomagnetic 
stations. 
 
In the next two images at 06:15:40 UT (Figure 8c) and 06:17:40 UT (Figure 8d), one 
can recognize expansions of the brightened area of both the morning arc westward 
(toward midnight) and the midnight spot poleward (not westward at all).  The 
morphologies of the expansion are different between these two bright areas, making the 
contrast between the morning broad arc and the midnight round spot clearer.  If looking 
at a fixed location, the activity at the local midnight is decaying whereas the morning 
activity is sustained during two images.  Thus the midnight spot and the morning arc 
independently broadened and brightened each other, and hence we can conclude that 
these simultaneous activities are independent of each other.  This is what we have 
already concluded from the ground geomagnetic field data. 
 
The independent auroral activities, one in the morning sector and the other in the 
midnight sector, merged with each other at 06:17:40 UT, making the auroral form 
similar to an ordinary substorm in the next image (06:19:50 UT, not shown here).  
When the merging took place at 06:17:40 UT, a very bright spot appeared in the 
merging region at 03 MLT in Figure 8d.  On the other hand, the third geomagnetic 
activity (4000 nT deviation) that started at 06:17 UT is very localized at around 01 LT 
(or 02 MLT, the IQA station only) in the northern hemisphere.  A similar offset is found 
in the first activity in the midnight sector.  Before the merging, the midnight auroral 
activity in the southern hemisphere is centered at post-midnight (Figure 8) whereas the 
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midnight geomagnetic activity in the northern hemisphere is centered at pre-midnight in 
both geographic and geomagnetic coordinate. 
 
As mentioned in section 3.1, the ground geomagnetic deviation shows the inter-
hemispheric difference, and this is most likely due to the large dipole tilt (22~23 degree 
during this short period).  This fact makes it difficult to simply map the southern 
hemispheric auroral image to the northern hemisphere.  The finite IMF BY also distorts 
the inter-hemispheric mapping relation in the azimuthal (local time) direction.  Together 
with the ambiguity in estimating the local time from the obliquely taken images, the 
inter-hemispheric difference of location could be as large as a few hours in local time.   
 
Here, we estimate it from the location of the third activity as 1~2 hours in local time.  
This is a reasonable correction if one compares the auroral activity in the midnight 
sector (Figure 8) and the geomagnetic disturbances in the pre-midnight sector (Figure 
7).  Note that the corresponding local time on the equatorial plane is similar to that of 
the northern hemisphere because the equatorial plane is much closer to the northern 
polar region than the southern polar region due the 22~23 degree dipole tilt.   
 
To examine the rational of this correction, we made a field-line tracing using 
Tsyganenko-96 geomagnetic field model [Tsyganenko, 1995; Tsyganenko and Stern, 
1996] and Geopack-3 mapping code [Tsyganenko, 2003].  We calculated  the foot 
points of GEOS-12 for three cases: (PD (nP), Dst (nT), IMF BY (nT), IMF BZ (nT)) = 
(0.1, 0, 0, 0), (10, -50, -5, -3), and (80, +50, -20, -20), where PD is the solar wind 
dynamic pressure.  The second case roughly corresponds to the condition before the SC, 
and the third case to that after the start of SC.  While the foot longitude in the northern 
hemisphere stays the same (279~280 long or 01 MLT) for all three cases, the foot 
longitude in the southern hemisphere drastically changes, from about 240 long (01 
MLT) for the first (quiet) case, to about 270 long (0130 MLT) for the second case, and 
to about 305 long (0230 MLT) for the third case.   
 
Note that the solar wind condition during this period is outside the range of data set 
from which existing magnetic field models are derived, and hence one may not make a 
quantitative argument using existing magnetic field model particularly for dayside.  Yet 
we have a good agreement in the inter-hemispheric longitudinal shift between the 
observation and the model.  Therefore, we can safely conclude that the IQA station and 
GOES-12 are on the same local time sector whereas the corresponding local time in the 
southern hemisphere shifts eastward by 1~2 hours in MLT.   
 
With this inter-hemispheric correction in the local time in mind, one may compare the 
common large-scale feature in the northern hemisphere (geomagnetic field data) and 
southern hemisphere (optical data).  Both the optical data by IMAGE/FUV and the 
ground-based magnetometer data show that the timing (06:17 UT) and location (02 
MLT in the northern hemisphere) of the onset of the huge and rapid activity (3000 nT in 
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2min) match with those of a spike-like signature at the GOES-12 satellite at 06:16:40 
UT as well as with those of the merging of the evening auroral activity and the morning 
auroral activity in the opposite hemisphere.  This coincidence suggests that the 
extremely rapid development toward ∆Bx = -4000 nT at the IQA station, only 6 minutes 
after the start of SC, might not be a simple extension of the midnight activity, but a 
result of the merging of two independent 2000 nT level activities.  Then the question is 
if this is true or not, and what is the mechanism if it is true.  We have no concrete 
answer to this question but discuss it later in section 4.3. 
 
In summary, the IMAGE-FUV data support the scenario derived from the ground-based 
magnetometer data although it is inconclusive: (1) Two strong ionospheric electric 
current systems with westward electrojets (both with a level of 2000 nT) started 
independently and simultaneously in the morning sector and the evening-midnight 
sector immediately after the SC was recognized. (2) An extremely large activity (level 
of 4000 nT) started when and where the above two activities met in the post-midnight 
sector. 
 
3.4. SUMMARY OF THE INITIAL 10 MINUTES 
 
Table 1 summarizes the time sequence from the shock arrival to the onsets of the largest 
geomagnetic activity at the IQA station.  Each column lists the activities in the 
magnetosphere, the ground geomagnetic field, and the aurora, respectively.  The onset 
of the large expansive activity in the evening-midnight sector was at 06:12 UT, while 
the onset of the strong ionospheric current system similar to those of substorms was 
recognized in the morning sector at either 06:12 UT or 06:13 UT (cannot be 
distinguished from the SC signature).  The onset of the localized 4000 nT activity at the 
high-latitude post-midnight (02 MLT) region was at 06:16-06:17 UT.  Corresponding 
activities are found in the southern hemisphere.  The inter-hemispheric offset of the 
local time during this period is 1~2 hours, i.e., 02 MLT in the northern hemisphere 
corresponds to 03~04 MLT in the southern hemisphere and to the local time sector of 
GOES-12. 
 
%%%%%% Table 1 %%%%%% 
 
The morphology (expansion of both the westward electrojet and aurora), the activity 
level (2000 nT magnetic deviation and the brightness of aurora), and the dynamic 
change of the cross-tail current make both the evening-midnight activity and the 
morning activity fall into the category of strong substorm expansion in the classic 
definition.  On the other hand, the substorm is a global phenomenon in the classic 
definition too.  The pseudo-breakup [e.g., Koskinen et al., 1992; and references therein] 
is the only category that the present activities may fall into, but no pseudo-breakup as 
strong as 2000 nT has ever been observed.  We rather consider that each activity could 
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have expanded globally if these two activities did not merge.  In this sense we can call 
these activities substorms, although they are not standard ones. 
 
 
4. DISCUSSION 
 
During the initial 6 minutes after the SC was recognized at 06:11:21 UT, three onsets of 
large geomagnetic activities of AL<-2000 nT associated with strong westward 
electrojets were observed together with auroral brightening.  The first two activities, one 
in the midnight sector starting at 06:12 UT, and the other in the morning sector starting 
at 06:12~06:13 UT, have the characteristics of substorm expansion, although they are 
independent of each other and their expansions are limited to the respective local 
regions during this 6 minutes.  The third activity is a sharp drop of ∆Bx only at the IQA 
station (02 MLT) reaching about -4000 nT together with a spike-like change of the 
magnetic field at GOES-12 on the same meridian 5 minutes after the other onsets.  This 
localized activity corresponds to intense aurora localized at 03 MLT in the southern 
hemisphere.  All these facts as well as their intensity make the initial phase of this 
magnetic storm unique.  The immediate question is the nature and the triggering 
mechanism of these three activities.   
 
4.1. TRIGGERING AND ENERGY SUPPLY 
 
The perfect match in timing between the SC and the substorm onsets in both the 
midnight and the morning sectors indicates that these particular substorms are triggered 
by the shock arrival.  In fact the pressure pulse of the solar wind is known to trigger 
some substorms directly (by anonymous mechanisms, e.g., current sheet instability or 
direct disruption of current by electric field or waves or pressure, etc.) or indirectly 
(through, e.g., tail reconnection) [e.g., Lui et al., 2005; Lyons et al., 2003; Meurant et 
al., 2003; Zhou et al., 2003; and references therein].  If the triggering of the present 
substorms were independent of the shock arrival, this triggering should have taken place 
within a short window (less than one minute) such that the dipolarization at GOES 
satellites should not take place before the shock arrival.  Such a pure coincidental 
chance is less than one percent (a less than one-minute window divided by the average 
interval time between two onsets (which is > 2 hour [Borovsky et al., 1993])).  
Therefore, the onset of the observed activities at 0612 UT is most likely (>99 % 
probability) triggered by the arrival of the shock, and we do not consider the unlike 
possibility of coincidence.   
 
All the widely-accepted substorm models predict the substorm onset location in the 
near-Earth plasma sheet ranging from several RE to 30 RE depending on which model 
[e.g., Ohtani, 2004; Lyons and Wang, 2004; Lui et al., 2005, and references therein].  
Reconnection models predict the onset location outside the geosynchronous orbit, and 
non-reconnection models predict it inside 10 RE.  Since the shock propagation velocity 
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is consistently high at 0.3 RE/sec throughout the interplanetary space and 
magnetosphere as summarized in Figure 6, the shock could not have arrived at the tail 
earlier than it is detected at GOES and Polar by traveling through the magnetosheath 
instead of the magnetosphere. 
 
Now we examine the time sequence.  The ground-based magnetometer data shows that 
the onset of the substorm expansive phase in the evening-midnight sector is 06:12 UT in 
one-minute resolution in the both hemispheres whereas the GOES and Polar satellites 
indicate that the depolarization is after 06:12:20 UT in 5-seconds resolution (the 
elevation angle of the magnetic field increased drastically at GOES-10 after 06:12:00 
UT, though).  Considering the Alfvén transit time between the geosynchronous location 
and the ground (which is about 1~3 minutes), the dipolarization timing at the GOES 
location is too late to cause the onset on the ground (Alfvén velocity is slower than the 
shock propagation velocity).  On the other hand, the shock arrival at the nightside inner 
magnetosphere is between 06:11:20 UT and 06:11:30 UT, and hence the triggering is 
not before 06:11:20 and not after 06:12:00 UT.  Therefore, the magnetospheric onset 
site of the substorm expansive phase must be between the Earth and the GOES 
satellites.  This location is not favorable to the reconnection models, in which the near-
Earth onset is caused by the sunward flow that is driven by the reconnection > 6 RE.  
The shock arrival at the reconnection site cannot be before 06:11:30 UT as mentioned 
above, and it is impossible to progress from the Earthward plasma acceleration at > 6 
RE to the transmission of sufficient electric field (which should be carried by the Alfvén 
velocity) into the ionosphere within one minute.  In fact Polar electric field data did not 
detect any signature of such Earthward convection until 06:12:15 UT.   
 
The triggering problem is related to the energy feeding problem after the onset.  For 
several hours before the SC, IMF BZ was about 0 ~ -5 nT, AL was 200~300 nT (not 
really quiet), and some plasma sheet thinning was recognized by the GOES satellites.  
ACE registered a short period (9 minutes) of large negative BZ (~ -8 nT) at about 13 
minutes before the shock, while this period of BZ ~ -8 nT is reduced to only 3 minutes 
at Geotail.  From this background, the energy stored in the magnetotail before the SC 
may be enough to cause an ordinary substorm.  However, the observed IMF condition 
(with small BZ during the last hour) normally does not cause an extremely large 
westward electrojet with AL~-2000 nT.  We are not aware of any report showing AL<-
2000 nT activity without a long (>15 min) period of southward IMF (BZ<-5nT).  We 
looked through uncalibrated AE during 2002, 2003, 2004, and first half of 2005, and 
found only 11 days with activity of AL<-2000 nT (one, three, four, and three days in 
2002, 2003, 2004, 2005, respectively).  All except two events (the January 21, 2005 
event and this event) are preceded by long (>15 min) periods of southward IMF (BZ<-
5nT).  Thus, the IMF condition before the SC is not favorable for storing sufficient 
magnetic energy in the magnetosphere to cause the observed westward electrojet AL<-
2000 nT by just releasing the energy.   
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Yet we observed a sharp decrease of AL reaching AL<-2000 nT within 5 minutes after 
the shock arrival.  Furthermore, the GOES and Polar data indicate that the cross-tail 
current did not substantially decrease after the onset.  It decreased briefly during 
06:13:00-06:14:20 UT, but the thin plasma sheet recovered afterward.  Thus the stored 
magnetic energy did not decrease after the onset at the geosynchronous orbit.  From 
these facts, the majority of the substorm energy until the merging of the two activities at 
06:16 UT is most likely powered directly from the solar wind (i.e., solar wind-
magnetosphere dynamo) rather than released from the stored energy in the 
magnetosphere.  This means that if tail reconnection is ever responsible for such a 
sustained energy conversion, the configuration of the near-Earth x-point must be 
stationary with a narrow exit angle.  The problem of the mechanisms of the triggering 
and the energy feeding requires lengthy dedicated discussion, which is beyond the 
scope of this paper. 
 
4.2. NATURE OF MORNING ACTIVITY 
 
The largest question on the morning activity concerns the similarity to and difference 
from ordinary substorms.  The morning activity has a classic signature of a substorm: 
the sudden intensification of both the aurora and the westward ionospheric Hall current, 
and the subsequent westward expansion of both the aurora and the electrojet.   
 
On the other hand, a solar wind pressure pulse is known to intensify the dayside auroral 
activity as a part of the dayside magnetospheric boundary phenomena [Sandholt et al., 
1994].  The majority of the global auroral brightenings in response to the interplanetary 
shock on the dayside do not accompany large development of the westward electrojet.  
Therefore, auroral brightenings in the morning and afternoon sectors immediately after 
the start of SC are often interpreted as the signature of SC-related non-substorm activity 
rather than substorm-related activity [Zesta el et al., 2000; Chua et al., 2001; Zhou et al., 
2003].  SC-related activity includes the Kelvin-Helmholtz-type vortex and the cusp-
related aurora [Elphinstone et al., 1993; Sandholt et al., 1994; Zhou et al., 2003].  The 
locations of these activities are mapped to the magnetopause or the plasma mantle.  
Another type of SC-related activity is a stimulation of field-aligned current by the 
Alfvén wave [Chua et al., 2001; Zhou et al., 2003].  In both cases of SC-related 
activities, the brightening of the aurora takes place first at noon, then rapidly expands 
from noon to midnight through both the morning and the afternoon sides of the auroral 
oval.   
 
However, the observation shows a steady increase of the westward electrojet and its 
expansion rather than propagation, as described in section 3.1.  The extremely high 
intensity (deviation < -2000 nT) corresponding to sunward convection also indicates 
that there is a strong dynamo in the sunward convection region inside the 
magnetosphere.  These features resemble those of substorm expansion rather than those 
of the SC-related boundary process.   
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Before concluding so, let us examine the mapping relation as illustrated in Figure 9.  If 
the observed activity in the morning sector is mapped to the magnetospheric boundary, 
then the direct solar wind interaction (direct inflowing into the magnetosphere) could be 
the source of the aurora and ionospheric electric field in spite of the substorm-like 
morphology.  If the observed activity is mapped to the inner magnetosphere such as the 
plasma sheet, then we cannot distinguish this activity from a substorm, although the 
region is limited to the morning side.  The key information is then the location of the 
polar cap boundary.   
 
%%%%%% Figure 9 %%%%%% 
 
The observed activity can also be mapped to both the magnetospheric boundary and the 
inner magnetosphere.  For example, the eastward electrojet (anti-sunward convection) 
inside the polar cap at 07 LT (the BJN station) is as strong as the westward electrojet 
(sunward convection) at lower latitudes on the same meridian (TRO and ABK) until 
06:16 UT, although the westward electrojet at the kernel of the morning activity (LRV, 
04 LT) is much stronger than the eastward electrojet in the polar cap (GDH, HRN, or 
BJN) or the westward electrojet in the late morning sector (TRO or ABK).  Therefore, 
the mapping relations could be different between from 07 LT and from 04 LT.  To 
avoid the confusion we examine the kernel of the activity, i.e., at the LRV station at 04 
LT.   
 
The best clue is direct detection of the polar cap boundary.  Low-altitude satellites can 
provide a snapshot of locations of key regions such as the polar cap, boundary layer, 
and the plasma sheet.  Unfortunately, none of the FAST and DMSP satellites, those 
which are capable of identifying the region, traversed the dayside polar region during 
06:10-06:20 UT.  The closest dayside traversals were after 06:35 UT by DMSP-F13 
from early afternoon to late morning and before 06:05 UT by DMSP-F15 from 
afternoon to noon, both in the northern hemisphere.  When DMSP-F13 passed the 
convection reversal in the morning sector at 06:51 UT, the morning geomagnetic 
stations had just finished the period of negative ∆Bx.  Another clue to detect the polar 
cap boundary and the cusp is the 2-D ionospheric convection pattern observed by HF 
radars because the 2-D ionospheric convection directly reflects the instantaneous 
location of the polar cap boundary.  However, the Cutlass HF radar, which covers the 
prenoon polar region at 6-7 UT, detected very weak signals because of the very 
disturbed ionospheric conditions after this strong SC, and it cannot give the convection 
data [M. Lester, private communication, 2005].   
 
Since no observation is available in determining the polar cap boundary, we have to rely 
on a magnetic field model, although it can be used only for qualitative argument as 
mentioned in section 3.3.  We again made a field-line tracing using the Tsyganenko-96 
model for different sets of parameters: (PD (nP), Dst (nT), IMF BY (nT), IMF BZ (nT)) = 
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(0.1, 0, 0, 0), (10, -50, -5, -3), (30, -50, ±10, -10), (50, -50, ±15, -15), and (80, ±50, ±20, 
-20).  The IMF observed by Geotail and ACE is strongly dawnward before the SC 
(about -5 nT entire hour) and during the SC (fluctuating but rather BY<0 than BY>0 
during the first several minutes).  Unless the IMF is strongly duskward (BY < +10nT), 
the LRV station is mapped to the same magnetic latitude (-69 GMLat) and several 
degrees equatorward of the polar cap with different longitude (more eastward for larger 
BY>0).  In general the IMF BY effect does not drastically change the mapping relation at 
this latitude.  
 
The latitude of the auroral arc seen by IMAGE (65 GMLat south) is nearly the same as 
the latitude of Region 2 upward field-aligned current in the other (northern) hemisphere 
obtained from the ground-based magnetometer data, and is 3~4 degree equatorward of 
the convection reversal or Region 1 downward field-aligned current.  This indicates 
both the aurora in the southern hemisphere and the westward electrojet in the northern 
hemisphere are connected to the inner magnetosphere but not the magnetospheric 
boundary layer. 
 
Furthermore, the westward electrojet is observed at higher latitude at 04 LT (LRV) than 
at 07 LT (TRO) whereas the auroral arc is observed at lower latitude at 04-05 LT than at 
07-08 LT.  Even if the auroral arc in the southern hemisphere might correspond to the 
convection reversal and to the magnetospheric boundary region at 07 LT, the aurora at 
04~05 MLT in the southern hemisphere is most likely mapped to Region 2 field-aligned 
current rather than Region 1 field-aligned current at 03~04 LT in the northern 
hemisphere.  With this mapping relation, the morning activity satisfies the classic 
definition of a substorm.   
 
The auroral arc seen in the IMAGE data is very narrow indicating discrete aurorae, and 
such discrete aurorae normally correspond to upward field-aligned currents with some 
exceptions [Morooka et al., 1998].  Inversely, a strong upward current means electron 
precipitation accelerated by parallel electric field according to the Knight's law [Knight, 
1973], and hence it normally causes a discrete aurora.  Taking into consideration the 
latitudinal coincidence, the intense aurora in the southern hemisphere most likely 
corresponds to the Region 2 upward field-aligned current in the northern hemisphere 
equatorward of the westward electrojet, although the exact conjugacy is not required for 
the present discussion (discrete auroral forms are often non-conjugate [e.g. Stenbaek-
Nelson and Otto, 1997]).   
 
One may yet argue that the present event is unusual and general rules might not apply 
because what we need to know is the actual magnetospheric configuration which is 
determined by the long history of IMF [Cumnock et al., 1997].  For example if the 
magnetospheric condition corresponds to a strongly duskward IMF, the LRV station can 
be mapped to the polar cap.  According to the Tsyganenko-96 model, a condition with 
BY=+15nT and BZ=-15nT makes such a mapping relation.   
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A faint auroral arc is recognized poleward of the ordinary arc in the dawn sector in 
Figure 8a.  The observed location of the transpolar arc indicates that the magnetospheric 
morphology (i.e., mapping relation) might reflect a weakly IMF BY>0 condition 
[Craven et al., 1991; Elphinstone et al., 1993] despite the measured BY<0 condition for 
the entire hour before the SC.  However it is difficult to assume a strong duskward BY 
(>+10nT) effect just from this.  Note that the mapping relation at midnight well agree 
with a dawnward IMF as discussed in section 3.3, and duskward IMF condition is 
limited to dayside or polar cap in this case.  A moderately duskward IMF (BY=+10nT 
with BZ=-10nT) makes the LRV station well equatorward of the polar cap boundary.  
Therefore, both the observed strong westward electrojet and aurora are located far 
equatorward of pole cap boundary in these cases. 
 
Thus, the possible IMF BY effect should not alter our conclusion: the intensification and 
expansion of the aurora and the westward electrojet in the early morning sector took 
place well equatorward of polar cap boundary, and hence they are connected to the 
inner magnetosphere but not to the magnetospheric boundary.  Together with the 
expanding features of strong geomagnetic and auroral activities, the morning activity, 
which is independent of the evening-midnight expansion, has all the classic 
characteristics of substorm expansion.  In other words we have simultaneous substorm 
onsets of the classic definition at two different locations, one somewhere between 21-01 
LT (from CMO to PBQ), and the other near the LRV station (04 LT).   
 
Simultaneous brightening of global auroral arcs in response to the pressure pulse has 
recently been reported in the different context of substorms [Chua et al., 2001; 
Boudouridis et al., 2003; Meurant et al. 2003].  However, these global auroral 
brightening events do not accompany very strong westward electrojets (mostly < 500 
nT in the morning sector), and in this sense the present event is different.  One may not 
dismiss an geomagnetic activity of > 2000 nT with classic features of substorm onset 
from a substorm.   
 
4.3. ONSET OF 4000 nT ACTIVITY 
 
A local but extremely large geomagnetic activity (~4000 nT) started at 06:17 UT at 02 
MLT (the IQA station).  This location and timing match those of the merging of the 
morning aurora and the midnight aurora, which were both expanding.  They also match 
those of a sharp change in the magnetic field with a short spike at the geosynchronous 
satellites (only GOES-12 but not GOES-10) at 06:17:40 UT.  These coincidences 
indicate that these phenomena (merging and onsets) are related; i.e., the last activity 
might be triggered by the merging of two preceding substorms.   
 
The detail of this onset and its exact mechanism are unknown due to the lack of 
observation points at this local time and latitude.  Here, we just point out one 
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possibility: namely, an instantaneous approach of the convection reversal in the 
morning sector (which is connected to the magnetospheric boundary) to the midnight 
activity from the polar cap side.  This possibility has never been considered in the past, 
but it is not impossible if the magnetopause surface wave becomes extremely large 
while the magnetopause shrinks due to the extremely high solar wind dynamic pressure 
(the highest solar wind velocity in history) and the fluctuating strong IMF.  In fact the 
short-lived spike in the GOES-12 data means that a very quick change of the 
contributing current sheet happened at around 06:17 UT at this particular local time.  
Furthermore, a signature of shrinked near-tail magnetopause is observed at the shock 
arrival.   
 
In Figure 4, total magnetic fields (|B|) observed by GOES-12 (01 LT) and Polar (21 LT, 
or XGSM = -5.3 RE, YGSM = +4.8 RE, ZGSM = -0.7 RE) increased at the shock arrival 
while |B| decreased at GOES-10 (21 LT, or XGSM = -5.1 RE, YGSM = +4.0 RE, ZGSM = -
1.5 RE).  The discrepancy between Polar and GOES-10, which are located close to each 
other (~1 RE), is difficult to understand unless we assume completely different 
influences of the magnetopause current and the cross-tail current between these two 
satellite locations.  Inversely such a local difference between Polar and GOES-10 can be 
understood if the magnetopause is located relatively close to these spacecraft.  Such an 
enhanced contribution from the magnetopause current is eventually predicted during the 
extremely high solar wind dynamic pressure conditions according to the Tyganenko-01 
model [C.T. Russell, private communication, 2005]. 
 
Thus it is possible that the extremely high solar wind dynamic pressure pressed the 
magnetopause very close to the central plasma sheet.  Furthermore, the magnetopause 
must be very wavy in response to the shock arrival, and in fact a large amplitude Pc-5 is 
observed at the ground as mentioned in section 3.1.  With this background, the topside 
magnetopause may have partially flashed through the nightside magnetosphere at 
around 06:17 UT.  If the enhanced magnetopause current approaches the plasma sheet, 
the oppositely-directed sheet currents during this short period may produce the spike-
like change in the geomagnetic field at GOES-12.  If this is the case, we may state that 
the last activity starting from 06:17 UT at around 02~03 MLT is triggered by the 
meeting of two activities, one in the evening-midnight sector, and the other in the 
morning sector. 
 
Unfortunately we cannot examine this scenario because of the lack of sufficient 
data/stations.  To test this idea, we need at least three times more ground stations in the 
longitudinal direction.  Such tests would be quite difficult even in the near future 
because the solar wind velocity of 2000 km/s does not occur very often.  However, we 
have one possibility.  If this scenario is correct, we can expect similar phenomena in the 
other magnetized planets which are subject to strong solar wind effects compared to 
their magnetospheric size.  Mercury is one such planet, and one can examine this 
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scenario in the future Mercury magnetospheric missions such as Bepi-Colombo [e.g., 
ESA web site, http://www.esa.int/esaSC/120391_index_0_m.html]. 
 
 
5. SUMMARY AND CONCLUSIONS 
 
Multiple data sets from ground-based magnetometers, satellite auroral images, and in-
situ data from geosynchronous satellites show several unusual features of the 
geomagnetic activities during the initial phase of the magnetic storm starting at 06:11 
UT on October, 29. 2003.  Three different strong westward electrojets of > 2000 nT 
level are observed during the initial 10 minutes after the start of SC.  SYM-H was 
positive during this period, i.e., the period is during the initial (compression) phase of 
the magnetic storm.  The first two activities satisfy the classic definition of substorm 
expansions and started independently of each other immediately after the SC was 
recognized in the evening-midnight sector and the morning sector, respectively.  
Considering its intensity and quickness, we should call them substorm expansions 
although the double onset locations make them non-standard.  The last activity started 
when and where the previous two activities met at around 02 MLT (in the northern 
hemisphere, and 03 MLT in the southern hemisphere) 6 minutes after the start of SC.  
The IMF condition before the SC had not been favorable in causing a strong substorm 
activity with ∆B < -2000 nT.   
 
Such a quick development of extremely strong activity (> 2000 nT geomagnetic 
deviation within 5 minutes from the start of SC) has never been reported previously.  
Two simultaneous but independent onsets of substorm expansions in the classic 
definition, although their activities are limited to either midnight sector or morning 
sector, are another unusual feature of this event.  Finally the quick development (3000 
nT in 2 minutes) of local activity (IQA station only) together with spike-like signature 
at GOES-12 is the other unusual feature.  Since the initial 10 minutes of the magnetic 
storm is thus unique, we described each event using as large body of data as possible. 
 
The minute-to-minute observations are given in Table 1.  They are summarized as 
follows: 
(1) The arrival of the interplanetary shock swept the magnetosphere quickly from the 
dayside to nightside with a velocity similar to the interplanetary shock velocity (about 
0.3 RE/sec).  The consistent propagation velocity throughout the upstream interplanetary 
space, the magnetosphere, and the downstream interplanetary space allows us to 
estimate the arrival time of the shock in 10-seconds accuracy in the near-Earth tail 
where no satellite was located. 
(2) In 1-second resolution data, the SC appeared on the ground nearly simultaneously at 
both dayside mid-latitude stations and a morning high-latitude station (KRN) at 
06:11:21 UT. 
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(3) The evening-midnight activity starting 06:12 UT, i.e., right after the SC was 
recognized showed quick development of a strong westward electrojet (reaching ∆B<-
1000 nT at 06:13 UT, and ∆B<2000 nT at 06:16 UT) and intense aurora, both 
expanding poleward.  These characteristics are typical ones of substorm expansion. 
(4) The morning activity starting either 06:12 UT or 06:13 UT, i.e., right after the start 
of SC also showed a quick development of a strong westward electrojet (reaching 
∆B<2000 nT at 06:15 UT) and intense aurora, both steadily expanding in the azimuthal 
direction at around 65 GMLat.  The activity also accompanies an eastward electrojet at 
poleward stations (> 70 GMLat).  This activity, at least for its kernel at 04 LT (05~06 
MLT) in the northern hemisphere, is not mapped to the magnetospheric boundary, but 
rather to the plasma sheet.  These characteristics are again typical ones of substorm 
expansion. 
(5) The onset time of the current sheet activity at the geosynchronous satellites are 
06:12:00 UT (only a half minute after the shock arrival), but substantial current 
disruption and electric field enhancement did not start until 06:13:00 UT.   
(6) The last activity started at 06:17 UT at post-midnight when two activities met at 
high-latitude midnight 6 minutes after onset, and registered a 3000 nT change within 2 
minutes (maximum of nearly 4000 nT at 10 minutes after the start of SC).  The GOES-
12 magnetic field at the same meridian showed a local (seen only in GOES-12) spiky 
increase in all components of the magnetic field at this onset time (06:16:40 UT). 
 
The first substorm onset in the evening-midnight sector started less than one minute 
after the shock arrival at near-Earth tail.  From the timing, this activity is most likely 
directly triggered by the shock arrival.  Similarly the second substorm onset in the 
morning sector is most likely triggered by the shock arrival.  A further examination of 
the shock arrival timing and onset timing at ground and the geosynchronous satellites 
leads us to conclude that the magnetospheric onset location is inside the 
geosynchronous orbit.  From these facts, this particular onset is less likely triggered by 
magnetotail reconnection.  Considering the IMF condition before the SC, the observed 
2000 nT activity is most likely maintained by the energy pumping from the solar wind 
(i.e., solar wind-magnetosphere dynamo) rather than the release of the stored energy 
although we cannot answer how this dynamo was formed.   
 
The last activity is difficult to understand partly because of its extremely high activity 
(3000 nT change in 2 minutes) at one local station (IQA) only and partly because of the 
unusual behavior of the associated spiky enhancement of the magnetic field observed by 
GOES-12.  We proposed a new scenario in which a part of the dayside field-aligned 
current system is detached and swept tailward, briefly passing very close to the 
substorm current system, and that this passage triggered the third activity. 
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Figure Captions 
 
Figure 1: Provisional geomagnetic indices for the 2003-10-29 magnetic storm. (a) Dst 
index, (b) AE index, (c) SYM and ASY indices.   
 
Figure 2: Interplanetary magnetic field data observed before and after the strong 
interplanetary shock that caused the sudden commencement of the geomagnetic storm 
at around 06:10 UT on 2003-10-29.  (a) ACE spacecraft (221 RE upstream) with 16-
seconds resolution, (b) Geotail spacecraft (26 RE upstream) with 1-second resolution.   
 
Figure 3: Energetic particle data from the SOPA instrument on board the LANL 
geosynchronous satellites during the initial phase of the 2003-10-29 storm (06:00-06:30 
UT). (a) Proton flux (50-400 keV); (b) Electron flux (50-300 keV).  The local times of 
the satellites at 06 UT are, from top to bottom, 07 LT (LANL-01A), 11 LT (LANL-
02A), 13 LT (LANL-97A), 16 LT (1994-084), 19 LT (1991-080), and 04 LT (1990-
095).   
 
Figure 4: Magnetic field data (5s resolution) from geosynchronous GOES-10 at around 
21 LT (thin lines) and GOES-12 at around 01 LT (think lines) during the initial phase of 
the 2003-10-29 storm (06:10-06:20 UT).  HP is northward component perpendicular to 
the spin plane (nearly parallel to the Earth's spin axis); HE is Earthward component 
perpendicular to HP; HN is eastward component completing local Cartesian coordinate; 
|B| is total field; inc = atan(HP/HE); and dip = acos(HP/|B|).  Magnetic field data from 
Polar (6s resolution), which was located only 1 RE away from GOES-10 at 21 LT, is 
over-plotted with broken lines in the SM coordinate system (Hp: parallel to Earth's 
dipole axis and 11° off from Earth's spin axis).  The vertical dot-dash-lines (06:11:40 
UT and 06:16:40 UT) indicate the arrival time of the shock and the onset timing of the 
very localized 4000 nT activity at the ground (see section 3.1), respectively.   
 
Figure 5: Deviation in the horizontal component on 2003-10-29 at 06:11:10-06:11:30 
UT. From top to bottom, ∆X component at Kiruna (07 LT, 65° GMLat), ∆H 
components of Urumqi (12 LT, 34° GMLat), Memanmetsu (16 LT, 35° GMLat), and 
Kanoya (15 LT, 22° GMLat).   
 
Figure 6: Illustration of the spacecraft locations viewed from the north (except Cluster) 
at around 6 UT on 2003-10-29 when the interplanetary shock passed the Earth.  Shock 
was registered in the magnetometer data of ACE, Geotail (GTL: 1s resolution), and 
Wind spacecraft in the solar wind and Cluster (CL), Polar (PLR), GOES (G) satellites 
inside the magnetosphere.  The energetic particles data by LANL satellites, i.e., LANL-
01A (L-1A), LANL-02A (L-2A), LANL-97A (L-97), 1994-084 (1994), 1991-080 
(1991), and 1990-095 (1990) also show the shock arrival. Time resolution is 10s or 
better except for ACE (16s resolution).   
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Figure 7: Worldwide geomagnetic field on 2003-10-29 at 06-07 UT: (a) in the auroral 
zone (GMLat ≈ 65°); (b) in the sub-auroral region (GMLat < 63°); (c) in the high 
latitude side of the auroral zone (GMLat > 70°).   
 
Figure 8: IMAGE-FUV data in the magnetic coordinate (GMLat and MLT) at 06:11-
06:18 UT on 2003-10-29 taken from the southern hemisphere: (a) at around 06:11:40 
UT; (b) at around 06:13:40 UT; (c) at around 06:15:40 UT; (d) at around 06:17:40 UT.   
 
Figure 9: Illustration of the basic dayside current system looking from the night toward 
the sun.  While Region 1 field-aligned current normally comes from magnetospheric 
boundary (plasma sheet boundary for the nightside case), Region 2 field-aligned current 
normally comes from the plasma sheet and the ring current.  Ionospheric Pedersen 
current closes this current system, and corresponding electric field causes the Hall 
current which is the major contributor to both the ionospheric current (electrojet) and 
the ground geomagnetic signature.  Region 1 and Region 2 field-aligned currents in the 
dawn/dusk sectors are topologically symmetric between the hemispheres although their 
intensity and exact locations can be different.  The aurora in the dawn/dusk sectors 
normally corresponds to upward current where keV electrons flow downward, and is 
normally topologically symmetric between the conjugate hemispheres.  
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Table 1.  Time sequence during the first 8 minutes of SC in 10-seconds resolution 
UT Magnetosphere Ground ∆B Image 

06:09:40 Shock arrival at X=26 RE upstream.   

0610:50 Shock arrival at LANL-02A (11 LT) 
and LANL-97A (13 LT). 

  

0611:10 Shock arrival at LANL-01A (7 LT).   

0611:20 Shock arrival at 1990-095 (4 LT), 
1994-084 (16 LT), and Cluster (X=0 
RE, Z=-10 RE). 

  

0611:20  Start of SC.  

0611:30   Residual from the previous 
auroral arc. 

0611:30 Shock arrival at 1991-080 (19 LT) 
and Polar (21 LT, Z=0 RE). 

  

0611:40 Shock arrival at GOES-12 (1 LT) and 
GOES-10 (21 LT). 

  

0612:00 Start of dipolarization at GOES-12 (1 
LT). 

  

0612    Peak of SC.  

0612    Onset of westward 
electrojet in evening-
midnight. 

 

0612:20 End of dipolarization at GOES-12 (1 
LT). 

  

0612:20 More stretched B-field than at the 
shock arrive GOES-10 (21 LT). 

  

0612:20 Short spike of E~20 mV/m at Polar.   

0612 ~ 
0613 

 Onset of westward 
electrojet in morning. 

 

0613:00 Start of cross-tail current decrease 
with E-field increase at 21 LT (Polar 
and GOES-10). 

  

0613  ∆B<-1000 nT at 
CMO (20 LT). 

 

0613:30     Sudden intensification of 
midnight spot and morning 
arc. 

0614:00 Peak of E (=40~50 mV/m) at Polar.   

0615  ∆B<-2000 nT at LRV 
(4 LT). 

 

0615:40     Expansion of midnight 
brightening (poleward) and 
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morning brightening 
(westward). 

0616  ∆B<-2000 nT at 
YKC (22 LT) and 
PBQ (1 LT). 

 

0616:40 Sharp spike of B at GOES-12 (1 LT).   

0617    Onset of ∆Bx<0 at 
IQA (1 LT). 

 

0617:40    Two brightened regions 
merged at post-midnight. 

0618    ∆Bx = -3000 nT/min 
at IQA (1 LT). 
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Figure 1: Provisional geomagnetic indices for the 2003-10-29 magnetic storm. (a) Dst 
index, (b) AE index, (c) SYM and ASY indices.   



Yamauchi et al.: SC-driven multiple substorm onsets (2005JA011285 ver. 051220)  page 33 

 
 
Figure 2: Interplanetary magnetic field data observed before and after the strong 
interplanetary shock that caused the sudden commencement of the geomagnetic storm 
at around 06:10 UT on 2003-10-29.  (a) ACE spacecraft (221 RE upstream) with 16-
seconds resolution, (b) Geotail spacecraft (26 RE upstream) with 1-second resolution.   
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Figure 3: Energetic particle data from the SOPA instrument on board the LANL 
geosynchronous satellites during the initial phase of the 2003-10-29 storm (06:00-06:30 
UT). (a) Proton flux (50-400 keV); (b) Electron flux (50-300 keV).  The local times of 
the satellites at 06 UT are, from top to bottom, 07 LT (LANL-01A), 11 LT (LANL-
02A), 13 LT (LANL-97A), 16 LT (1994-084), 19 LT (1991-080), and 04 LT (1990-
095).   
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Figure 3b  
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Figure 4: Magnetic field data (5s resolution) from geosynchronous GOES-10 at around 
21 LT (thin lines) and GOES-12 at around 01 LT (think lines) during the initial phase of 
the 2003-10-29 storm (06:10-06:20 UT).  HP is northward component perpendicular to 
the spin plane (nearly parallel to the Earth's spin axis); HE is Earthward component 
perpendicular to HP; HN is eastward component completing local Cartesian coordinate; 
|B| is total field; inc = atan(HP/HE); and dip = acos(HP/|B|).  Magnetic field data from 
Polar (6s resolution), which was located only 1 RE away from GOES-10 at 21 LT, is 
over-plotted with broken lines in the SM coordinate system (Hp: parallel to Earth's 
dipole axis and 11° off from Earth's spin axis).  The vertical dot-dash-lines (06:11:40 
UT and 06:16:40 UT) indicate the arrival time of the shock and the onset timing of the 
very localized 4000 nT activity at the ground (see section 3.1), respectively.   
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Figure 5: Deviation in the horizontal component on 2003-10-29 at 06:11:10-06:11:30 
UT. From top to bottom, ∆X component at Kiruna (07 LT, 65° GMLat), ∆H 
components of Urumqi (12 LT, 34° GMLat), Memanmetsu (16 LT, 35° GMLat), and 
Kanoya (15 LT, 22° GMLat).   
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Figure 6: Illustration of the spacecraft locations viewed from the north (except Cluster) 
at around 6 UT on 2003-10-29 when the interplanetary shock passed the Earth.  Shock 
was registered in the magnetometer data of ACE, Geotail (GTL: 1s resolution), and 
Wind spacecraft in the solar wind and Cluster (CL), Polar (PLR), GOES (G) satellites 
inside the magnetosphere.  The energetic particles data by LANL satellites, i.e., LANL-
01A (L-1A), LANL-02A (L-2A), LANL-97A (L-97), 1994-084 (1994), 1991-080 
(1991), and 1990-095 (1990) also show the shock arrival. Time resolution is 10s or 
better except for ACE (16s resolution).   
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Figure 7: Worldwide geomagnetic field on 2003-10-29 at 06-07 UT: (a) in the auroral 
zone (GMLat ≈ 65°); (b) in the sub-auroral region (GMLat < 63°); (c) in the high 
latitude side of the auroral zone (GMLat > 70°).   
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Figure 7b  
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Figure 7c  
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Figure 8: IMAGE-FUV data in the magnetic coordinate (GMLat and MLT) at 06:11-
06:18 UT on 2003-10-29 taken from the southern hemisphere: (a) at around 06:11:40 
UT; (b) at around 06:13:40 UT; (c) at around 06:15:40 UT; (d) at around 06:17:40 UT.   
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Figure 9: Illustration of the basic dayside current system looking from the night toward 
the sun.  While Region 1 field-aligned current normally comes from magnetospheric 
boundary (plasma sheet boundary for the nightside case), Region 2 field-aligned current 
normally comes from the plasma sheet and the ring current.  Ionospheric Pedersen 
current closes this current system, and corresponding electric field causes the Hall 
current which is the major contributor to both the ionospheric current (electrojet) and 
the ground geomagnetic signature.  Region 1 and Region 2 field-aligned currents in the 
dawn/dusk sectors are topologically symmetric between the hemispheres although their 
intensity and exact locations can be different.  The aurora in the dawn/dusk sectors 
normally corresponds to upward current where keV electrons flow downward, and is 
normally topologically symmetric between the conjugate hemispheres.  
 
 


