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Large-scale coherent motions of a current sheet such as flapping or tearing of the entire current
sheet are studied. The basic magnetohydrodynamic (MHD) equations are integrated over the thick-
ness of the current sheet, and linear analysis is applied to obtain the modified dispersion relations
for the MHD fast, Alfvén, and the slow waves under non-zero background cross-sheet current. The
dispersion relation for the fast and slow modes contains an imaginary part, because energy is ex-
changed between the wave and the background sheet current. A short-wavelength MHD slow wave
propagating against/along the magnetic tension force is unstable/stable, whereas the situation is
reversed for the MHD fast waves. For a thin current sheet (long-wavelength limit), the MHD slow
wave becomes stagnant and very unstable, whereas the MHD fast wave propagates slowly and its
stability depends on the strength of the background current.
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I. INTRODUCTION

One important issue in space plasma physics is the dy-
namics of a current sheet such as the terrestrial plasma
sheet, Jovian current disk, heliospheric current sheets,
filaments of the solar chromosphere and corona, and
bow shocks and magnetopauses of the planetary mag-
netospheres. The density and pressure of plasma inside
these current sheets are normally much higher than those
outside them1, and hence many current sheets in space
are called plasma sheets. This topic could also be im-
portant for dense plasma inside plasma laboratories or
stars2,3,4. However, basic processes such as the behavior
of large-scale magnetohydrodynamic (MHD) waves in-
side the current sheet have not yet been well understood.
Most of the wave studies have been carried out linearly
or quasi-linearly when the background magnetic field is
uniform or very weakly bent5, but not when it is strongly
bent because of difficulties in modeling.

Let us consider, for example, the terrestrial plasma
sheet. In the simplest configuration, it is represented by
a duskward background current Jy(x)ŷ in a northward
background magnetic field Bz(x)ẑ as shown in Figure 1a
(x sunward, y duskward, and z northward). This current
makes Bx (sunward pointing background magnetic field)
non-uniform in the z direction even though the current
outside of the plasma sheet is nearly zero6. It is not
easy even to linearize the basic MHD equations in such
a configuration.

Analogy of the linear MHD waves in uniform media
may help to predict the large-scale dynamics of the entire
current sheet. We expect three basic large-scale coherent
motions corresponding to the MHD fast, Alfvén, and slow
waves, as shown in Figure 2. The Alfvén mode (Figure
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2a) preserves the strength of the magnetic and plasma
pressures because it is an incompressional mode, while
these pressures vary in-phase and out-of-phase for the
MHD fast and slow modes, respectively. The increase of
Bx caused by the fluctuations of cross-sheet current must
be located at the plasma density maximum/minimum for
the fast/slow modes (Figures 2b/2c).

These predictions are not bad for space plasma.
Ulysses observations of magnetic and plasma distur-
bances in the Jovian current disk suggest the existence
of the tearing-like motions with a period of 1.9 hours7

in addition to the 11-hour period flapping motion due to
the Jovian rotation8. Both Hyakutake and Hale-Bopp
comets clearly demonstrated the existence of tearing-
and/or flapping-like structures in the plasma tail while
the dust tail does not have such structures. The plane-
tary bow shock and magnetopause are also well known
to have wave-like motion9. Propagation of the tearing
motion of the terrestrial plasma sheet has been proposed
to explain the triggering of magnetic reconnection and
plasmoid formation shortly after a substorm onset at the
inner edge of the plasma sheet10,11.

Another difficulty is the kinetic effect because the cur-
rent sheets in space are only several ion gyroradii thick
and filled with non-Maxwellian plasma. If this effect
is significant, the MHD treatment is questionable and
Figure 2’s predictions are no longer useful. Fortunately,
MHD has been successful in describing the approximate
configuration of the current sheets such as the terrestrial
magnetopause12. Therefore, we may probably use MHD
as long as we consider large-scale motions.

If Figure 2’s predictions are correct, we may make the
following simplifications. 1. We may assume ∂/∂y = 0
strictly for background and disturbed quantities. We
may also assume duskward background field By = 0.
2. The motion decays outside the current sheet. Since
P ′ � P ′e in Figure 1a, we may make the plane wave
approximation with the wave normal pointing the x di-
rection. 3. For the same reason, we may integrate the
physical quantities over the thickness of the current sheet
as shown in Figure 1b.

These simplifications enable us to derive appropriate
basic equations for linear studies of large-scale motions
of a current sheet. This is the first purpose of this paper.
The second purpose is to obtain the dispersion relation
for the predicted large-scale coherent motion as shown in
Figure 2. We ignore the kinetic effect for these studies.

II. THICKNESS INTEGRATION

Integration of the current sheet over its thickness as
shown in Figure 1b is not simple unless the background
magnetic field is uniform such as in the ionosphere13 be-
cause otherwise the magnetic tension force caused by
the bending of the geomagnetic field6 is not negligible.
Therefore, we employ the following assumptions:
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(a) ρ́(z=h)� ρ́(z=0)

(b) Ṕ (z=h)� Ṕ (z=0)

(c) |∂úx
∂z
| � |〈úx〉

h
|

(d) úz , úy � 〈úx〉

(e) |∂Bz
∂z
| � |〈Bz〉

h
|

(g) rg < h� L

where ρ́, úx,y, and Ṕ are mass density, convection ve-
locity along the equatorial plane, and pressure; h is the
thickness of the current sheet outside of which the plasma
density is negligibly small; L is the scale length along the
current sheet; rg is the ion Larmor radius; and the quan-
tities within the bracket are averaged over the thickness,
e.g., 〈úx,y〉 =

∫
úx,ydz/h, etc.

These assumptions are quite reasonable in the terres-
trial plasma sheet1,14 although assumption (c) could be
invalid when the flow speed in the plasma sheet boundary
layer is much faster than that in the central plasma sheet.
The effect of such north-south velocity shear should be
studied by a different method. The last assumption is the
necessary condition for the MHD approximation, but the
sufficient conditions to ignore the kinetic effect in space
plasma is still an open question. So, we simply assume
the validity of MHD in this paper.

The thickness-integrated mass density (ρ), momentum
(ρux,y, Fz), pressure (P ), and electric current (I) are
defined as

(ρ , ρux,y , P , Ix,y)≡
∫ +h

−h
(ρ́ , ρ́úx,y , Ṕ , J́x,y)dz

Fz≡ [ρ́úz]
+h
−h

where Fz ∝ ρ/h is a small mass flux escaping (or supply
for minus sign) from the current sheet in the z direction.

We also define Bz ≡ 〈B́z〉, Bx,y ≡ [B́x,y]z=h, and Iz ≡
hJz ≡ h[J́z]z=h. Since both B́x,y and J́z are zero at the
z = 0 plane, their z dependency must be very similar to
each other.

We now integrate the basic MHD equations over the
thickness. The thickness-integrated continuity equation
is:

∂

∂t
ρ =

∫ +h

−h

∂ρ́

∂t
dz = −

∫ +h

−h
∇·(ρ́ú)dz

= −∇x,y·
∫ +h

−h
ρ́úx,ydz −

∫ +h

−h

∂

∂z
(ρ́úz)dz

= −∇x,y·(ρux,y)− Fz (1)

The thickness-integrated momentum equations are:

∂

∂t
(ρux) ∼= −∇x,y·(ρuxux,y)− [ρ́úxúz]

+h
−h −

∂P

∂x

+Bz

∫ +h

−h
J́ydz −

∫ +h

−h
J́zB́ydz

3



∼= −∇x,y·(ρuxux,y)− uxFz −
∂P

∂x
+IyBz − αAIzBy (2)

∂

∂t
(ρuy) ∼= −∇x,y·(ρuyux,y)− uyFz

−IxBz + αAIzBx (3)

∂

∂t
(ρ́úz) ∼= −

∂

∂x
(uxρ́úz)−

∂

∂y
(uyρ́úz)−

∂

∂z
(ρ́ú2z)

−∂Ṕ
∂z

+ J́xB́y − J́yBx
∂

∂t
Fz ∼= −∇x,y·(Fzux,y)− αp

P

h2

−αc
IyBx
h
− αL

IxBy
h

(4)

where αA = O(1) is an integral constant for
∫ +h

−h J́
2
z dz,

i.e., αA = 2/(2n + 1) if J́z ∝ zn; and we assumed the

same z dependence for B́x,y and J́z. The other integral

constants are αp = O(1) (= γ2h2/2d2 if Ṕ ∝ e−γ|z|/d),

αc = O(1) (∼= 0.14h/d if J́y ∝ e−|z|/d), and αL = O(1).
The z component induction equation is:

∂

∂t
Bz = 〈 ∂

∂x
(ú× B́)y〉 − 〈

∂

∂y
(ú× B́)x〉

∼= −∇x,y·(Bzux,y) + η∇x,y·(
FzBx,y

ρ0
) (5)

where η = O(1) is the integral constant for
∫ +h

−h úzB́x,ydz.
To close the above equation system, we need to express
I in terms of E and/or B.

A simple application of the plain wave assumption to
the Ampere’s law yields:

µ0Iz = − ∂

∂x
(2hBy) (6)

µ0Iy = − ∂

∂x
(2hBz) (7)

Eq. (6) is fine, but Eq. (7) is wrong because Eq. (7) means
an increase of field energy when the cross-tail current Iy
is reduced. Therefore, we have to integrate the original
Ampere’s law over the z direction.

µ0Iy =

∫ +h

−h
(
∂B́x
∂z
− ∂B́z

∂x
)

= [B́x]+h−h −
∂

∂x
(2hBz)

where Bx can be expressed by ux according to the frozen-
in relation illustrated in Figure 3:

δx

h
=
δBx
Bz

=
δ[B́x]z=hz=0

Bz

or

µ0δIy = 2Bz
δx

h
− ∂

∂x
(2hδBz)
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where δx is the relative displacement of the plasma be-
tween z = 0 and z = h. Using this relation, we finally
obtain

dIy
dt

=
2Bz
µ0h

d(δx)

dt
− 2h

µ0

∂2Bz
∂x∂t

(8)

where d(δx)/dt is the deviation from the background con-
vection.

III. BASIC EQUATIONS

Let us summarize the basic Eqs. (1)-(6), and (8) under
the strict ∂/∂y = 0 assumption.

∂

∂t
ρ = − ∂

∂x
(ρux)− Fz (9a)

∂

∂t
(ρux) = − ∂

∂x
(ρu2x)− uxFz −

∂P

∂x
+ IyBz (9b)

∂

∂t
(ρuy) = − ∂

∂x
(ρuyux) + αAIzBx − IxBz − uyFz (9c)

∂

∂t
Fz = − ∂

∂x
(uxFz)−αp

P

h2
−αc

IyBx
h
−αL

IxBy
h

(9d)

δBx =
Bz
h
δx (9e)

∂

∂t
Bz = − ∂

∂x
(Bzux) + η

∂

∂x
(
hBxFz
ρ0

) (9f)

∂

∂t
By = Bx

∂

∂x
uy −

∂

∂x
(Byux) (9g)

d

dt
Iy =

2Bz
µ0h

d(δx)

dt
− 2h

µ0

∂2Bz
∂x∂t

(9h)

Iz =
2h

µ0

∂

∂x
By (9i)

where 0 < α ≤ 1 is the integral constant. To close the
above system of equations under given background con-
vection u0 (i.e., ux = u0 + d(δx)/dt), we need the Ohm’s

law to express Ix (= −[B́y]+h−h/µ0). Although the Ix term
becomes important in Eq. (9c) when we consider strong
background convection, it can be ignored in the linear
analyses of a subsonic flow15,16. Therefore, we do not
need to obtain the expression for Ix.

Eq. (9) must be linearized for wave mode analyses. The
zero-order and first-order magnetic fields are expressed
as B = (Bx, 0, Bz) and b = (bx, by, bz), where we include
non-zero Bx = µ0I0/2 and non-zero background convec-
tion u0x̂. The zero-order equations are then summarized
as:

∂

∂x
(ρ0u0) = 0 (10a)

∂

∂x
(Bzu0) = 0 (10b)

1

ρ0

∂P0

∂x
=

2BxBz
µ0ρ0

− u0
∂u0
∂x

(10c)
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where the present approximation is valid only for sub-
sonic flows.

The z component momentum equation requires gradi-
ent of P0 to be balanced with I0Bx in the z direction, but
it does not restrict the x dependence of P0. Therefore,
Eq. (10) has a non-trivial solution.

IV. LINEAR ANALYSES

The first order equations for the perturbations are ob-
tained by subtracting Eq. (10) from Eq. (9). We have

D

Dt
ρ = −ρ0

∂ux
∂x
− Fz (11a)

ρ0
D

Dt
ux = −C2

S

∂ρ

∂x
− u0Fz + IyBz +

2Bxbz
µ0

(11b)

D

Dt
Fz = −αp

P

h2
− αc

BxIy
h
− αc

2Bx
µ0h

bx (11c)

D

Dt
bx =

Bz
h
ux (11d)

D

Dt
bz = −Bz

∂ux
∂x

+ (
ηhBx
ρ0

)
∂Fz
∂x

(11e)

D

Dt
Iy =

2Bz
µ0h

ux −
2h

µ0

∂2bz
∂x∂t

(11f)

for the magnetosonic mode (uy = 0), and

(
D

Dt
)2uy = αAV

2
Ax

∂2

∂x2
uy −Bz

D

Dt
Ix (12a)

(
D

Dt
)2Fz = ηαcV

2
Ax

∂2

∂x2
Fz (12b)

for the incompressional mode (δx = 0), where D/Dt =
∂/∂t + u0∂/∂x is the Lagrange time derivative which

causes the Doppler shift effect, VA = B
√

2h/µ0ρ0 is the

Alfvén speed, CS =
√

(∂P/∂ρ)ad is the sound speed, the
subscript “ad” denotes adiabatic compression, and the
coupling terms from the magnetosonic mode (δx 6= 0) to
the incompressional mode (uy 6= 0) are ignored whereas
there is no coupling from the incompressional mode
(uy 6= 0) to the magnetosonic mode (δx 6= 0) in the linear
limit. Solution (12b) corresponds to the flapping motion
in the z direction illustrated in Figure 2a, whereas solu-
tion (12a) is a slip of the current sheet in the y direction
without changing the location and density of the current
sheet. Since the IxBz term in Eq. (9c) is small compared
to the IzBx term under the ∂/∂y = 0 assumption15, the
last term in Eq. (12a) can be ignored and both the in-
compressional solutions become the same as that for the
Alfvén mode in uniform media5. We hereafter consider
the magnetosonic mode only.

Eq. (11) for the magnetosonic mode becomes:

(
D2

Dt2
− C2

S

∂2

∂x2
)ux =
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V 2
Az

∂2

∂x2
ux −

ηVAxVAzh

ρ0

∂2

∂x2
Fz −

VAxVAz
h

∂

∂x
ux

+
ηV 2

Ax

ρ0

∂

∂x
Fz +

V 2
Az

h2
ux −

u0
ρ0

D

Dt
Fz +

C2
S

ρ0

∂

∂x
Fz (13)

D2Fz
Dt2

= αp
C2
Sρ0
h2

∂ux
∂x

+ αp
C2
S

h2
Fz + ηαcV

2
Ax

∂2Fz
∂x2

−αc
VAxVAzρ0

h
(
∂2ux
∂x2

+
2ux
h2

) (14)

There are seven terms on the right hand side of Eq. (13).
The first two terms and the fifth term represent the con-
tributions from the magnetic pressure through δIy, the
third and fourth terms represent the energy loss from the
wave through bz during the compression, and the last two
terms represent the momentum and mass transfers from
uz to ux. The fifth term brings the dispersion effect into
the system, making the wave signature complicated, e.g.,
converting the bz signature from monopolar to bipolar.
Right hand side of Eq. (14) is attributed to the pressure
gradient force (terms with αp) and the J×B force (terms
with αc). The second term causes dispersion whereas the
last term inside the bracket causes dissipation or insta-
bility due to the energy coupling between the wave and
the cross-sheet current.

Now, we take the Foureir analyses. Assuming the per-
turbed quantities ∝ exp[−iωt+ ikx], Eqs. (13) and (14)
become:

[ω2
δ − k2(C2

S + V 2
Az)− ik

VAxVAz
h

+
V 2
Az

h2
]ux

= −[iωδ
u0
ρ0

+ k2
ηVAxVAzh

ρ0
+ ik

ηV 2
Ax + C2

S

ρ0
]Fz

and

[ω2
δ − k2ηαcV 2

Ax + αp
C2
S

h2
]Fz

= −[k2αc
VAxVAzρ0

h
(1− 2

k2h2
) + ikαp

C2
Sρ0
h2

]ux

where ωδ = ω − ku0 is the Doppler-shifted frequency.
Combining these equations for subsonic u0, we have:

[
ω2
δ

k2
− (C2

S + V 2
Az)− i

VAxVAz
kh

+
V 2
Az

k2h2
]

× [
ω2
δ

k2
− ηαcV 2

Ax + αp
C2
S

k2h2
]

∼= [ηVAxVAz + i
ηV 2

Ax + C2
S

kh
]

× [αcVAxVAz(1−
2

k2h2
) + iαp

C2
S

kh
] (15)

Unlike the MHD dispersion relation in uniform media,
Eq. (15) includes the imaginary part which determines
the evolution of the wave. For example, a wave propa-
gating toward the −x (+x) direction, i.e., against (along)
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the magnetic tension force grows (decays) if the solu-
tion satisfies ωi/k < 0. The non-zero horizontal wave
length compared to the thickness of the current sheet is
solely responsible for the dispersion because the imagi-
nary unit always appears as i(kh)−1 or its power in Eq.
(15). Therefore, the wave behavior must be quite differ-
ent between for short-wavelength (rg � 1/k < h) and
long-wavelength (1/k > h > rg) cases.

For a thick current sheet (rg � 1/k < h), dispersion
relation (15) must become similar to that for the ordinary
MHD waves in uniform media. To see it, we assume real
k vector and set ωδ = ωr + iωi. The real part of the
equation becomes:

(V 2
ph)2 − C2

FV
2
ph + ηαcV

2
AxC

2
S

= − (αpC
2
S + V 2

Az)

k2h2
V 2
ph −

(αpC
2
S + αcV

2
Az)ηV

2
Ax

k2h2

+
αpC

2
SV

2
Az

k2h2
− αpC

2
SV

2
Az

k4h4

−2ωi
ωr

VAxVAz
kh

V 2
ph +O(

ω2
i

ω2
r

)V 4
ph (16)

where CF =
√
C2
S + V 2

Az + ηαcV 2
Ax is the MHD fast

speed, Vph = ωr/k is the phase velocity, O() denotes
the order of magnitude, and we assumed ωr � ωi. The
left hand side of (16) is very similar to the ordinary dis-
persion relation for the magnetosonic waves in uniform
media5. The right hand side of (16) is the correction due
to the finite thickness (kh 6=∞) of the current sheet.

The imaginary part of (15) becomes

[2V 2
ph − C2

F +
V 2
Az + αpC

2
S

k2h2
]
2ωikhV

2
ph

ωrVAxVAz
=

V 2
ph + (ηαp + αc)C

2
S +

αpC
2
S − 2αcC

2
S − 2ηαcV

2
Ax

k2h2

Especially for a thick current sheet (1/k � h), it becomes

ωi
ωr

= ±VAxVAz
2khV 2

ph

[
V 2
ph + (ηαp + αc)C

2
S√

C4
F − 4ηαcV 2

AxC
2
S

+O(
1

k2h2
)] (17)

where

V 2
ph =

C2
F ±

√
C4
F − 4ηαcV 2

AxC
2
S

2
O(

C2
F

k2h2
)

and the positive (negative) sign is for the MHD fast
(slow) mode. Inside the large bracket of Eq. (17) is nearly
unity because the sound speed is normally faster than
the Alfvén speed inside the current sheet. Therefore, the
growth or decay rate ωi is nearly proportional to the fi-
nite cross-sheet current I0 (∝ Bx ∝ VAx): the MHD slow
wave grows when travelling against the magnetic ten-
sion force whereas MHD fast wave grows when travelling
along the magnetic tension force for the short-wavelength
limit (rg � 1/k � h). The free energy of this instability
comes from the sheet current.
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This MHD instability causes a coherent tearing mo-
tion as shown in Figure 2, but is not the same as the
ordinary microscopic tearing mode instability. The lat-
ter requires the dissipation of the electric current as the
non-MHD effect17 whereas the former requires only the
energy conversion from the magnetic field to the bulk
motion. Therefore, the growth rate given by Eq. (17) is
different from that for the ordinary microscopic tearing
mode instability17.

Let us move to a thin current sheet case (1/k > h >
rg). Note that our formulation is valid only when the
kinetic effect can be neglected. Since one may no longer
assume ωr > ωi, we start from Eq. (15) under kh � 1
assumption.

(h2ω2
δ )2 + h2ω2

δ [αpC
2
S + V 2

Az − ikhVAxVAz] + αpC
2
SV

2
Az

+ikhVAxVAz[ηαcV
2
Ax + (2αc − αp)C2

S ] = O(k2h2C4
S)

or

[h2ω2
δ + αpC

2
S − ikhVAxVAzξs]

× [h2ω2
δ + V 2

Az − ikhVAxVAzξf ] = O(k2h2C4
S) (18)

where

ξs =
2αcC

2
S + αcηV

2
Ax

αpC2
S − V 2

Az

> 0

ξf =
(αp − 2αc)C

2
S − αcηV 2

Ax − V 2
Az

αpC2
S − V 2

Az

and the sign of ξf depends on the strength of the sheet
current because αp − 2αc is normally positive.

The solutions for Eq. (18) are:

hωδ = ±i√αpCS [1− ikhξsVAxVAz
2αpC2

S

+O(k2h2)] (19a)

or

±iVAz[1− ikh
ξfVAx
2VAz

+O(k2h2)] (19b)

The first solution (19a) corresponds to the MHD slow
mode with |ωr| < |ωi|, i.e., a quick growth/decay un-
der slow propagation along/against the magnetic tension
force in the plasma rest frame (moving with u0). The
solution is somewhat similar to the growth rate of the or-
dinary microscopic tearing mode instability but different
from it by a factor of

√
rge/h, where rge is the electron

Larmor radius17. The other solution (19b) corresponds
to the MHD fast mode. If CS > VAx, the wave quickly
grows/decays when propagating slowly along/against the
magnetic tension force, which is the same as the case for
short-wavelength limit. However, this is reversed if the
current layer is strong enough to satisfy CS < VAx.

V. TERRESTRIAL PLASMA SHEET

Typical values for the terrestrial plasma sheet1,6,14 are
Bz ∼= 1.5 nT,Bx ∼= 5 nT, plasma density∼= 0.3 cm−3, and
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T = 0.5 ∼ 3×107 K. From these values we have VAz ∼= 50
km/s, VAx ∼= 200 km/s, and CS = 200 ∼ 500 km/s
within a factor of 3 in accuracy. Assuming αA = 0.4,
αp = 0.5, αc = 0.15, and η = 0.3 (i.e., ξs = 0.7 ∼ 0.6 and
ξf = 0.2 ∼ 0.4), we have approximately

Vph (fast) ∼= CS = 200 ∼ 500 km/s

h|ωi| (fast) = 15 ∼ 30 km/s (20a)

Vph (slow) ∼= 0.8VAz ∼= 40 km/s

h|ωi| (slow) ∼= 35 km/s (20b)

for very short-wavelength limit (1/k � h), and

h|ωi| (fast) ∼= 50 km/s� Vph (fast) (20c)

h|ωi| (slow) = 150 ∼ 350 km/s� Vph (slow) (20d)

for very long-wavelength limit (1/k � h > rg). Since the
thickness of the terrestrial plasma sheet is about a few
Earth radius (h ∼= 5000 − 10000 km/s), (20b) means a
growth time of about 5 minutes. This cannot be ignored
compared to the travel time of the MHD slow wave from
the inner edge of the plasma sheet to the near-Earth mag-
netic neutral line10.

In the terrestrial plasma sheet, the current density
gradually changes in the x direction, and this effect is
illustrated in Figure 4. As a result, the growing per-
turbed bz may exceed the background Bz. If the original
perturbations of the plasma pressure and the magnetic
pressure is out-of-phase (slow mode), they may become
in-phase (fast mode) at this point. The above estimation
supports this scenario. Then ux must exceed the MHD
fast velocity according to the MHD fast mode relation
(bz/Bz ∼= ux/CF ). Together with the density increase
expected from the mode relation, we naturally predict a
clear plasmoid signature with an attached slow shock, as
is observed by the Geotail satellite18. Thus, the plasmoid
can be formed as the result of the tailward propagation
of current disruption.

VI. CONCLUSIONS

We studied coherent motions of a current sheet. Using
linear analyses on the thickness-integrated MHD equa-
tions with non-zero background sheet current, we ob-
tained dispersion relations for the MHD fast, Alfvén,
and slow waves. The present study does not include the
kinetic effect nor the background velocity shear in the
z direction. Unlike the ordinary MHD dispersion rela-
tions in a uniform medium, the dispersion relation in-
cludes an imaginary part, causing growth or decay of the
waves. The growth rate is nearly proportional to the total
cross-tail current, representing energy coupling between
the wave and the cross-tail current. A short-wavelength
MHD slow wave propagating against/along the magnetic
tension force is unstable/stable, whereas wave becomes
stagnant and very unstable in the long-wavelength limit
or a very thin current sheet. The stability of the MHD
fast wave depends on the strength of the sheet current.
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FIG. 1. The current sheet configuration and its simplifi-
cation. Since we consider MHD waves which decay in both
z = +∞ and z = −∞ directions, we attempt to simplify the
configuration to a background sheet current in +y direction
and a background magnetic field in +z direction.
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FIG. 2. Possible coherent motions of thin current sheet. In
MHD regime, we expect three modes: fast, Alfvén, and slow.

FIG. 3. The relation between δBx and the displacement of
the plasma in the x direction.

FIG. 4. Illustration of the tailward wave propagation and
the launch of a plasmoid or plasma bubbles.
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