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Vorticity Equation for MHD Fast Waves in Geospace Environment
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The magnetohydrodynamic (MHD) vorticity equation is modified in order to apply it to

nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited.

Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity

equation. When the wave normal is not aligned to the finite velocity convection and the source

region is spatially limited, a longitudinal polarization (u⊥·J⊥) causes a pair of plus and minus

charges inside the compressional plane waves or shocks, generating a pair of FACs. This

polarization is not related to the separation between the electrons and ions caused by their

difference in mass (i.e., Langmuir mode), a separation which is inherent to compressional

waves. The resultant double field-aligned current structure exists both with and without

the contributions from curvature drift, which is questionable in terms of its contribution to

vorticity change from the viewpoint of single-particle motion.
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1. Introduction

The importance of the magnetohydrodynamic (MHD) vorticity equation in studying generation

of the large-scale field-aligned current (FAC) has been suggested by many authors [e.g., Hasegawa

and Sato, 1980; Vasyliunas, 1984]. However, the most frequently used form, for example, the

one by Sato and Iijima [1979], is rather general and can be simplified further if we restrict our

discussion to the MHD fast waves or shocks as shown in Figure 1 because special relations exist

in the MHD fast mode. Further, Sato and Iijima’s vorticity equation is based on more or less

stationary plasma, and may not be applicable to a standing structure (an MHD fast shock) in a

fast flow or a rapidly moving structure (an MHD fast wave) in Figure 1. The source region of

vorticity moves far upstream before the bouncing drift particle (which carries the information of

“drift”caused by curvature) can be reflected back from, for example, a magnetic mirror. Hence

the curvature drift does not always have to be included. The purpose of this paper is to derive a

modified vorticity equation applicable to the above situation.

We also discuss the resulting generation of FACs. Since the vorticity equation can be obtained by

the particle drift theory as well as by MHD theory, it is often expressed with the current divergence

term on its left-hand side when FAC generation is discussed. This procedure is an appropriate one

when the time derivative of the vorticity is not essential, i.e., for rather slow convection or steady

state convection [Wolf and Spiro, 1985, and references therein]. However, we take a different

approach because the present situation is more dynamic. The MHD vorticity equation has its

root on Newton’s second law as it is equivalent to the momentum equation, and hence it can

be interpreted as a cause-effect relation of how the vorticity is generated or deformed due to the

other physical quantities. Having the current divergence term on the left hand side possibly makes

it difficult to see this cause-effect relation. Therefore we attempt to keep the vorticity term on
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the left-hand side of the equation. This procedure does not necessarily prohibit the use of the

vorticity equation to calculate the divergence of the perpendicular current: one may still discuss

the FAC generation using the vorticity equation after the whole set of MHD equations is solved

simultaneously, for example, by numerical simulations, which is left for future studies.

2. Modified Vorticity Equation

The fully nonlinear form of the MHD vorticity equation in the magnetosphere can be found in

equation (A6) of Hasegawa and Sato [1980]:

ρ
d

dt

(∇× u)‖

B
=−∇⊥ ·J⊥ + Jiner ·

∇ρ
ρ

+ (∇P + ρ
du

dt
) · (Jcurv + J∇B

P
) (1)

where the subscript ‖ represents parallel component to the magnetic field, and the subscripts curv,

∇B, and iner represent the contributions from the curvature drift, the gradient B drift, and the

inertia drift, respectively. Equation (1) is the original form of what Sato and Iijima [1979] used.

Note that the sign for the ∇ρ term should be plus instead of minus as appeared in Hasegawa and

Sato’s equation (A6). Note also that there is another misprint in Sato and Iijima’s [1979] equation

(4) (∇B should be ∇B2).

Let us consider each drift’s contribution inside an MHD fast wave propagating across the back-

ground magnetic field. We assume that the extent of this wave along the magnetic field is limited

as shown in Figure 1. In this case, any particle drift directly related to the gyromotion must be still

taken into account, while a particle drift associated with longitudinal motion (like mirror bounc-

ing) may not always contribute to the vorticity equation because the wave is expected to move

further upstream before the mirror-bounced particles (which eventually carry the information of

the “drift”) come back to the wave. Among the three types of drifts in equation (1), the curvature
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drift involves the longitudinal motion. Thus we may not expect that the curvature drift always

contributes to the vorticity equation (1) when a height-limited wave is moving across the magnetic

field as shown in the Figure 1.

On the basis of the above consideration, we propose to use the following equation instead of (1):

ρ
d

dt

(∇× u)‖

B
=−∇⊥ ·J⊥ + Jiner ·

∇ρ
ρ

+ (J⊥ ×B) · (αJcurv + J∇B)

P
(2)

where we used the momentum equation to rewrite ∇P + ρdu/dt. The only difference between

(1) and (2) is the additional parameter α (0 ≤ α ≤ 1) on the Jcurv term. We have α = 1 if the

curvature drift is fully included and α = 0 if it is totally neglected. Note that the curvature drift

term is derived without taking into account the mirror bouncing; yet physical contributors of this

drift term are bounced particles. Therefore we now leave both possibilities of having α = 1 and

α < 1.

By inserting the expression for Jcurv, J∇B , and Jiner, i.e.,

Jcurv
P

=
∇× b̂

B
(3a)

J∇B
P

= ∇(
1

B
)× b̂ (3b)

Jiner =
b̂

B
× (ρ

du

dt
)

= J⊥ −
b̂×∇P

B
(3c)

equation (2) can be rewritten as

d

dt

(∇× u)‖

B
= −∇⊥ ·J⊥

ρ
− (1 + α)

J⊥
ρB
·∇B

+ J⊥ ·
∇ρ
ρ2
−

(∇P ×∇ρ)‖

ρ2B
(4)
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where b̂ = B/B. It is now obvious from (3) that neglecting the curvature drift is equivalent to

taking a two-dimensional approximation (all quantities are uniform along B), which is appropriate

for plane MHD fast wave or shock propagating across the geomagnetic field.

Let us consider possible additional relations that the MHD fast mode may obey in the configu-

ration of Figure 1. The following two assumptions may be appropriate for this situation:

∇P ‖ ∇ρ (5a)

B ∝ ρ (5b)

Assumption (5a) is an extension of the polytropic relation d(Pρ−γ)/dt = 0 and assumption (5b)

in an extension of the frozen-in condition d(Bρ−1)/dt = 0. Strictly speaking, these conditions

are valid only within the same fluid element, but we extend them to the entire two-dimensional

plane perpendicular to the magnetic field. This extension is not a bad assumption as long as we

consider a plane MHD fast wave propagating across the magnetic field. Although this assumption

is not always valid (e.g., assumption (5b) is violated whenever the diamagnetic effect is essential

like MHD slow waves), there are situations where conditions (5a) and (5b) are satisfied.

Under these assumptions, equation (4) becomes much simpler:

d

dt

(∇× u)‖

B
= −∇⊥ ·J⊥

ρ
− αJ⊥ ·∇B

ρB
(6)

This is the vorticity equation for the MHD fast waves or shocks. The value of α depends on the

configuration along the magnetic field; i.e., it is unity if the extent of the wave is infinite along the

magnetic field whereas it is less than unity if the wave is “height-limited”as shown in Figure 1.

Equation (6) tells us how the vorticity is generated from given self-consistent distributions of

B, ρ, J⊥, etc.; however, this equation alone is incomplete for determining the generation of FACs.

This can be seen by expressing the vorticity equation in terms of the convection electric field.

∇⊥ ·E⊥ = −B(∇× u)‖ + u⊥ ·∇ ×B (7)
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Note that the parallel electric field is zero inside the source region because of the frozen-in condition

(5b). With the help of (7), equation (6) becomes

d

dt

∇⊥ ·E⊥
B2

− B2

ρ

∇⊥ ·J⊥
B2

=
d

dt

u⊥ ·∇ ×B

B2
+ α

J⊥ ·∇B
ρB

(8)

It is now clear from equation (8) that the determination of the field-aligned current generation

requires the J⊥-E⊥ relation to be specified. In other words, we need to specify how the actual

FACs are generated from given space charges.

3. Possible J-E Relations

The most probable relation between the space charges QC = hε0∇⊥ ·E⊥ and the field-aligned

current J‖ = −h∇⊥ ·J⊥ is a linear relation; i.e., J‖ ∝ QC or

∇⊥ ·J⊥ = −σ∇⊥ ·E⊥ (9a)

where h is the height of the source region along the magnetic field and σ is a proportional constant.

Let us consider two cases in which relation (9a) holds.

1. As soon as the space charge QC is formed inside an MHD fast wave or a shock, the electric

field due to QC is expected to propagate along the magnetic field from the height-limited source

region. Such a transmission is carried by an Alfvén wave. Since the source wave (i.e., the MHD

fast wave) travels further upstream across the magnetic field before the launched Alfvén wave may

be reflected back from, for example, the ionosphere, the reflected wave can be ignored here. The

Alfvén wave can carry a certain pair of J‖ and QC , which satisfies

∇⊥ ·J⊥ = ∓ΣA
h
∇⊥ ·E⊥

= ∓σA∇⊥ ·E⊥ (9b)
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where ΣA = (µ0VA)−1 is the equivalent “conductivity (admittance)”of the Alfvén wave [Sato and

Iijima, 1979; Kan and Sun, 1985], σA = ΣA/h, and VA is the Alfvén velocity. The minus sign is

to be adopted since the current flows out of the plus charge.

2. If the wave is more or less standing in a mixture of plasma which is composed of a preexisting

stagnant (or slowly moving) part and an inflow part as shown in Figure 1b, the reflected wave may

travel through the stagnant medium and come back to the original position. In this quasi-standing

situation, we expect the J-E relation to be governed by Ohm’s law where the wave is reflected

back. For example, if the main part of the wave is reflected at the dayside ionosphere where we

can assume uniform conductivity (e.g., at dayside cusp), the relation between ∇⊥ ·J⊥ and ∇⊥ ·E⊥

can be

∇⊥ ·J⊥ = − 1

h
∇⊥ ·I⊥(i)

= −ΣP
h
∇⊥ ·E⊥(i)

= −σP∇⊥ ·E⊥ (9c)

where σP = ΣP /h, and I⊥
(i) and E⊥

(i) are the height-integrated ionospheric current and electric

field, respectively. Equation (9c) is exactly the same as equation (9b) except for σ values.

Let us rewrite equation (8) using relation (9a):

(
d

dt
+

1

τ
)
∇⊥ ·E⊥
B2

=
d

dt

µ0J⊥ ·u⊥
B2

+ α
J⊥ ·∇B
ρB

(10)

where τ = ρ/σB2, which is given as

τA ∼
ρh

ΣAB2
(11a)

for the first case based on equation (9b), or

τP ∼
ρh

ΣPB2
(11b)
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for the second case based on equation (9c). Readers may refer to Figure 3b of Sato and Iijima

[1979] for this case. The decay time τ given in (11a) represents how efficiently the electromagnetic

energy is taken away by the Alfvén wave, whereas τP of (11b) represents the energy loss rate due

to Joule dissipation in the ionosphere, and of course τP > τA must be satisfied (otherwise, we may

not use τP for τ). These energy loss rates easily satisfy the relation:

| d
dt
| > 1

τ
(12)

because |d/dt| ∼ |VF∇| > VAL
−1 > VAh

−1 ∼ τ−1A , where VF = (C2
S + V 2

A)0.5 is the MHD fast

velocity across the magnetic field, CS is the sound speed, and L is the thickness of the wave front.

Equation (10) states how the space charges, and hence the FACs are formed when the fluid

element experiences a change of J⊥ ·u⊥ while J⊥ experiences a change of B inside the MHD fast

wave or shock. The source energy for this charge separation is the kinetic energy of the inflow

convection, and this is a kind of dynamo equation. Therefore a convecting medium is required for

equation (10) or (8). In fact, the J⊥·u⊥ term becomes zero for the linear approximation (i.e., both

u and J are first-order small quantities) and in such case, the assumptions (5a) and (5b) must be

reexamined.

Let us evaluate the source terms (right-hand side) of equation (10). Since the full time derivative

is approximately d/dt ∼ VFL−1, the first source term is evaluated as (uVFV
−2
A )Jρ−1L−1 while the

second source term is evaluated as Jρ−1L−1. Therefore the first source term is dominating as long

as

κ = (
β

2
+ 1)

u

VF
(13)

is large, where β is the ratio of plasma pressure to the magnetic pressure, i.e., β = 2C2
SV
−2
A . We

now consider a finite convection in which κ > 1. This condition is rather easily achieved for high β

plasma. Under κ > 1 condition, we may neglect the second source term; i.e., we may safely assume
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α = 0 without losing generality regardless of the discussions in section 2. Tracing back the α = 0

condition to equation (6), one can see that κ > 1 guarantees an equivalence between J‖ and time

derivative of the vorticity.

4. Double Field-Aligned Current Structure

We hereafter assume κ > 1 and hence α = 0 in order to extract the most important feature of

equation (10) for MHD fast waves or shocks. According to equation (10) under α = 0 condition,

the distribution of the space charge QC ∝ ∇⊥ ·E⊥ can be obtained inside the compressional MHD

fast waves or shocks in the configuration of Figure 2a. The discussion is given in two stages. We

first ignore the magnetic field curvature (∇× b̂ = 0), an effect to be evaluated later.

Without Curvature: Two-Dimensional Approximation

Let us ignore the magnetic field curvature (∇× b̂ = 0) and extract the most important feature.

Omission of the magnetic curvature implies a two-dimensional approximation (perpendicular to the

magnetic field) for the wave itself, i.e., plane wave approximation inside the source region. Under

this assumption, u⊥ ·∇ ×B is rewritten as (u⊥ ×∇B)‖, and hence equation (10) is simplified as

(
d

dt
+

1

τ
)
∇⊥ ·E⊥
B2

=
d

dt

(u×∇B)‖

B2
(14)

where we already assumed α = 0 as discussed above. The profile of the source term is sketched in

Figure 2b. Since the source term is a full time derivative of u×∇B, it must give a pair of positive

and negative values for the same fluid element. Therefore we have a pair of plus and minus charges

on the same stream line as a solution of (14). This paired-charge solution is obtained in an MHD

scheme, not in a two-fluid scheme. Therefore these charges are not the ordinary (Langmuir type)
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polarization charges due to finite Larmor radius which are inherent to compressional waves. In

fact, no charge is obtained as a solution of (14) if the wave normal is aligned with the convection,

while the charges due to the finite Larmor radius must appear in this special situation.

Figure 2a illustrates these charges and back-up longitudinal electric current from minus charges

to the plus charges as well. Note that there is another current which lies along the wave front. This

transversal current is always found in the MHD fast waves or shocks, and is normally stronger than

the longitudinal current; however, it does not contribute to the charge separation given here. The

senses of the paired-charges depend on the wave normal direction with respect to the convection

direction. Once a pair of charges are formed, relation (9a) guarantees a generation of a pair of

FACs which is closed with the polarization current inside the wave. This double field-aligned

current structure is the most distinct characteristics of the field-aligned current generation from

a compressional MHD fast wave or shock. There is another characteristics: asymmetry on the

charge distribution is introduced by the presence of the decay term on the left-hand side of (14).

Effect of Curvature

Next, we examine if the double current structure still exists when the curvature effect is included.

In order to evaluate the source terms of equation (10), we need to know the current distribution

by integrating (9a):

J⊥ = σ(u⊥×B− uin×Bin) + J0 (15)

where subscript “in”denotes an upstream value and J0 is an integration constant, which must be

a divergence-free vector. Strictly speaking, a simulation based on at least the two-fluid theory is

necessary to know the actual current distribution, or J0. However, we here assume a constant and

uniform J0 in the uin×Bin direction as the most simple form for J0. This simplification is rational
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because the present purpose is to check whether we may still have a paired-charge solution even if

the magnetic field curvature is taken into account.

Substituting (15) into (10) under α = 0 condition, one obtains

(
d

dt
+

1

τ
)
∇⊥ ·E⊥
B2

= µ0(J0 − σuin×Bin) · d
dt

u⊥
B2

(16)

As long as |σuB| > J0, the profile of the source term of (16) in the Figure 2a configuration is

morphologically the same as what we have obtained already, and hence, the paired-charge solution

is again obtained.

Let us mention a perfect two-dimensional case (source region is not limited along the magnetic

field). In this case, the spatial derivative along the magnetic field must be zero leading to σ = 0 in

equation (9a). Thus we have only a plus or a minus value for the solution of (8). In other words,

we need a limited height of the source region along the magnetic field in order to have the double

field-aligned current structure. This is another evidence that the paired-charge solution obtained

here is different from a Langmuir type longitudinal polarization typical for compressional MHD

fast waves or shocks.

5. Conclusions and Possible Applications

We have obtained a simplified form of the vorticity equation (6) for the MHD fast waves or

shocks when conditions (5a) and (5b) are satisfied. In a special configuration such as of Figure 1

when equation (9a) is also satisfied, the vorticity equation can be rewritten as in (10). A pair of

FACs can be generated due to changes of u⊥ ·J⊥ depending on the wave normal direction with

respect to a finite background convection as is demonstrated in Figure 2 with equation (14). This

wave converts the kinetic energy of the inflow convection into the electromagnetic energy of the

FACs. Thus equation (10) can also be interpreted as a dynamo equation. Contributions from
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the curvature drift, which we believe is only a minor contributer to the vorticity equation for the

configuration shown in Figure 1, can be substantially neglected if κ > 1, i.e., if the plasma β

is high or the convection is fast enough. In the linear limit when κ < 1, i.e., when we do not

have the source energy in the form of finite convection, the present formulation does not apply.

The resultant paired-charge structure is different from the ordinary (Langmuir type) longitudinal

polarization which is inherent to a compressional wave because the present result is formulated in

the MHD scheme.

As possible applications, the authors propose two places in the magnetosphere: 1. the dayside

cusp where the solar wind may directly enter the exterior cusp and become decelerated to produce

the cusp region 1 FAC and the mantle FAC [e.g., Erlandson et al., 1988] as shown in Figure 3a; and

2. the nightside where the substorm current wedge may propagate tailward against the convection,

causing dipolarization [Lopez and Lui, 1990; Yamauchi, 1990] as shown in Figure 3b. Equation (16)

shows that the double current structure is expected even if there is a background current in the

upstream region. There are several reports about such double field-aligned current structures inside

expanding auroral arcs during the substorm expansive phase [Zanetti and Potemra, 1992; Yamauchi

et al., 1992]. The initial excitation of this wave (increase of pressure) may be caused by direct

compression as a result of enhanced convection. One of several possible mechanisms for enhanced

convection is given by Lui et al. [1991, 1993] in which a force imbalance led by an instability (such

as the cross-field instability) accelerates plasma to high speeds while causing a current disruption

in addition. Another mechanism is simply local enhancements of the tail polarization electric field,

or convection, driven by pressure irregularity in the low-latitude boundary layer [Lundin et al.,

1992]. Further studies are of course necessary to clarify these applications.



– page 13– date: 2022- 10- 18

Acknowledgments. A part of this work (ATYL) has been supported by NASA under Task I of

contract N00024-85-C-8301 and by the Atmospheric Sciences Section of NSF grant-9114316 to the

Johns Hopkins University, Applied Physics Laboratory.

The Editor thanks T. Sato and another referee for their assistance in evaluating this paper.

References

Erlandson, R. E., L. J. Zanetti, T. A. Potemra, P. F. Bythrow, and R. Lundin, IMF By dependence

of region 1 Birkeland currents near noon, J. Geophys. Res., 93, 9804–9814, 1988.

Hasegawa, A., and T. Sato, Generation of field-aligned currents during substorm, in Dynamics of

the Magnetosphere, edited by S.-I. Akasofu, pp. 529–542, D. Reidel, Hingham, Mass., 1980.

Kan, J. R., and W. Sun, Simulation of the westward travelling surge and Pi 2 pulsations during

substorms, J. Geophys. Res., 90, 10911–10922, 1985.

Lopez, R. E., and A. T. Y. Lui, A multisatellite case study of the expansion of a substorm current

wedge in the near-Earth magnetotail, J. Geophys. Res., 95, 8009–8017, 1990.

Lui, A. T. Y., C.-L. Chang, A. Mankofsky, H.-K. Wong, and D. Winske, A cross-field current

instability for substorm expansions, J. Geophys. Res., 96, 11389–11401, 1991.

Lui, A. T. Y., P. H. Yoon, and C.-L. Chang, Quasi-linear analysis of ion Weibel instability in the

Earth’s neutral sheet, J. Geophys. Res., 98, 153–163, 1993.

Lundin, R, I. Sandahl, J. Woch, M. Yamauchi, R. Elphinstone, and J. S. Murphree, Boundary

layer driven magnetospheric substorms, Eur. Space Agency Spec. Publ., ESA SP-335, 193–203,

1992..

Sato, T., and T. Iijima, Primary sources of large-scale Birkeland current, Space Sci. Rev., 24,

347–366, 1979.

Vasyliunas, V. M., Fundamentals of current description, in Magnetospheric Currents, Geophys.

Monogr. Ser., vol. 28, edited by T. A. Potemra, pp. 63–66, AGU, Washington, D. C., 1984.

Wolf, R. A., and R. W. Spiro, Particle behavior in the magnetosphere, in Computer Simulation of

Space Plasma, edited by H. Matsumoto and T. Sato, pp. 227–254, D. Reidel, Hingham, Mass.,

1985.



– page 14– date: 2022- 10- 18

Walters, G. K., On the existence of a second standing shock wave attached to the magnetosphere,

J. Geophys. Res., 71, 1341–1244, 1966.

Yamauchi, M., A theory of field-aligned current generation from the plasma sheet and the poleward

expansive of aurora substorms, Ph.D. thesis, 201 pp., Univ. of Alaska, Fairbanks, May 1990.

Yamauchi, M., R. Lundin, and B. Aparicio, Viking observation of the substorm current wedge,

Eur. Space Agency Spec. Publ., ESA SP-335, 495–497, 1992.

Zanetti, L. J., and T. A. Potemra, Magnetospheric-ionospheric currents; global locations of Birke-

land current regions, paper presented at International Conference on Substroms (ISC-1), Kiruna,

Sweden, March 23 to 27, 1992.

A. T. Y. Lui, The Johns Hopkins University Applied Physics Laboratory, Johns Hopkins Road,

Laurel, MD 20723-6099.

R. Lundin and M. Yamauchi, Swedish Institute of Space Phys-ics, Box 812, S-98128 Kiruna,

Sweden.

YAMAUCHI ET AL.: VORTICITY EQUATION FOR MHD FAST WAVES



– page 15– date: 2022- 10- 18

Fig. 1. Configurations under consideration. There exists the MHD (a) fast wave or (b) fast

shock with extent limited in the direction of the magnetic field. Since we mostly consider the

geospace environment, the magnetic field converges outside the source region. The background

plasma is moving toward the wave or the shock (κ defined in equation (13) is larger than unity),

and for Figure 1b at a supersonic speed. When particles which experience the curvature of the

magnetic field inside the wave are reflected back from, for example, the magnetic mirror carrying

the information of the “drift,”the wave itself is already far upstream of its original position, and

the reflected particles cannot catch up with the wave.

Fig. 2. (a) Space charge separation inside a nonlinear MHD fast wave propagating against a

finite velocity convection is illustrated. The convection is decelerated across the wave giving its

kinetic energy to the current system. Therefore the polarization current flows from negative to

positive. The polarity of the FAC is very sensitive to the direction of the wave normal with

respect to the convection direction. (b) These space charges are calculated based on equation

(14). The trailing charges in the downstream region arise from the decay (second) term on the

left-hand side of the equation.

Fig. 3. Possible magnetospheric regions where the double field-aligned current structure could be

found due to the present mechanism: (a) dayside cusp where the magnetosheath flow is supposed

to be supersonic [e.g., Walters, 1966]; and (b) substorm current wedge travelling tailward against

convection. The senses of the separated space charges are obtained based of the directions of the

geomagnetic field, flow, and the wave normal. In both cases, the surface current which is inherent

to MHD fast waves is terminated at both dawn and dusk sides because the dawn-dusk extent of

the wave is also limited. This current accumulates charges on the front side of the wave. In the

night side, there is also a cross tail current in the opposite direction of this surface current, and

as a result, the double field-aligned current system is generated where the cross-tail current is

disrupted.
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experience the curvature of the magnetic field inside the

wave are reflected back from, for example, the magnetic

mirror carrying the information of the “drift,”the wave

itself is already far upstream of its original position, and

the reflected particles cannot catch up with the wave.
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system. Therefore the polarization current flows from
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sitive to the direction of the wave normal with respect

to the convection direction. (b) These space charges are

calculated based on equation (14). The trailing charges

in the downstream region arise from the decay (second)

term on the left-hand side of the equation.
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Fig. 3. Possible magnetospheric regions where the

double field-aligned current structure could be found

due to the present mechanism: (a) dayside cusp where

the magnetosheath flow is supposed to be supersonic

[e.g., Walters, 1966]; and (b) substorm current wedge

travelling tailward against convection. The senses of

the separated space charges are obtained based of the

directions of the geomagnetic field, flow, and the wave

normal. In both cases, the surface current which is in-

herent to MHD fast waves is terminated at both dawn

and dusk sides because the dawn-dusk extent of the wave

is also limited. This current accumulates charges on the

front side of the wave. In the night side, there is also

a cross tail current in the opposite direction of this sur-

face current, and as a result, the double field-aligned

current system is generated where the cross-tail current

is disrupted.


