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Abstract.
The aim of aurora tomography is to reconstruct the 3D lu-

minosity distribution of aurora from multiple monochromatic
images taken with a multi view-point observing network. As
a logical extension of this, we propose a generalized tomo-
graphic inversion of aurora in which different simultaneous
signatures of particle precipitation are invoked in the calcu-
lation in order to retrieve more comprehensive information
about the initial differential energy spectrum of precipitating
particles at the top of the atmosphere. The method combines
information from the luminosity distribution of aurora ob-
tained by optical imagers, electron density data from the EIS-
CAT radar, and cosmic noise absorption data from imaging
riometers. All these data are integrated together in a statis-
tical sense to infer the energy spectrum of the primary elec-
trons causing the aurora. In this scheme, minimization or
optimization in the inverse problem is converted to establish-
ing a Bayesian model that gives the most probable function
model, as well as the relative significance of each type of
input data used in the calculation.

Keywords : aurora tomography, inverse problem, Bayes
model, precipitating particle energy, EISCAT radar, imaging
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1 Introduction

We have been working for more than ten years on tomo-
graphic inversion of aurora in Antarctica, in Iceland (Aso
et al., 1990, 1993), and since the start of the Swedish ALIS
(Auroral Large Imaging System) in the Kiruna region (Aso
et al., 1998; Gustavsson et al., 2001a; Brändström et al.,
2003). In this analysis, both an analytical method and alge-
braic reconstruction techniques (ART) such as MART (Mul-
tiplicative ART) or SIRT (Simultaneous Iterative ART) are
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employed on up to six images viewing the aurora in the same
volume from different viewing positions together with some
constraints for this under-determined and ill-posed problem.
To stabilize the solution, we use the a priori constraints that
the aurora is excited by electrons traveling along the mag-
netic field lines and that the altitude profile of luminosity
does not change abruptly. In August 2005, the Japanese
Reimei satellite was launched and is taking monochromatic
images of aurora from above, i.e. topside and lateral side of
aurora. This makes it possible to use less constrained and
time-dependent reconstruction of the auroral volume emis-
sion rate. This combination of ground based and in situ
imaging is an advance in auroral tomography, but it is dif-
ficult to get observations in satisfactory conjunction. To go
beyond the conventional tomography, it is here proposed to
utilize in the solution of the inverse problem all multimodal
data of parameters that result from precipitating aurora par-
ticles. These data are the simultaneously enhanced electron
density observed by the EISCAT radar and the increased cos-
mic noise absorption detected by imaging riometer. It is even
possible to include observations of the total electron content
(TEC) which is an integration of electron density along the
propagation path of a radio wave.

Inversion methods to retrieve the electron energy spec-
trum solely from ion production or electron density observed
by the EISCAT radar have been developed by many work-
ers, e.g. the CARD method by Brekke et al. (1989), SPEC-
TRUM by Kirkwood (1988), and a time-dependent inversion
by Semeter and Kamalabadi (2005). For TEC data, Raymund
et al. (1990) compared the reconstruction of electron den-
sity distribution with incoherent scatter radar measurements.
Imaging riometers give information about the harder part of
the precipitating particle spectrum, and inversion analyses
based on imaging riometer have been carried out by Kosch
et al. (2001), Ashrafi et al. (2005).

For the ionization and excitation of atmospheric con-
stituents by precipitating electrons, which is a basic “for-
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ward” problem, many theoretical formulations have been de-
veloped. According to Rees (1963) (also in Rees, 1989),
the ionization ratēq(z) for the initial differential energy flux
spectrum at the top of the atmospheref0(E0) can be ap-
proximately expressed by an integral over the relevant energy
range as

q̄(z) =
N (z)

1ǫion

∫

ρ(R) f0(E0)Eoλ(E0, χ)

R(E0)N (R)
d E0

(1)

= A(z)
∫

f0(E0)Eo Q(Eo)d E0

wherez = p/g is the scale height,ρ the atmospheric density,
λ the normalized energy dissipation distribution function,χ

the atmospheric depth or distance from the top,E0 the ini-
tial electron energy,1ǫion the ionization energy cost,N the
number density of ionizable constituents,R the range or pen-
etration depth for the particle with energyE0, andA(z) and
Q(E0) collect the corresponding terms together. This simpli-
fied ionization rate is based on the empirical curves for en-
ergy dissipation distribution and effective range which give
energy deposition as a function of fractional range. These
together with scattering depth and neutral density yield an
altitude-dependent ionization rate for electron beams, mo-
noenergetic and others.

In a similar way, the volume emission rate or aurora lu-
minosity profile3(z) for f0(E0) can likewise be expressed
(Sergienko and Ivanov, 1993; Rees, 1963, 1989) as

3λ(z) =
Aλ

∑

Aλ

ρ(z)Pi (z)

ǫi
j (z)

∫

f0(E0)Eoλ(E0, χ)

R(E0)
d E0

(2)

= B(z)
∫

f0(E0)Eo L(Eo)d E0

where Aλis the Einstein emission coefficient,ǫi
j the excita-

tion energy cost of the transition j for species i,Pi the ex-
citation probability for species i,R̄ the average range for
E0, and B(z) and L(E0) collects the corresponding terms
together. This is a simplified emission rate for N2

+ 1NG
427.8 nm from a given altitude-dependent N2 ionization rate
for mono-energetic electrons. Incorporation of images with
different wavelength in the present tomographic approach
should be targeted for further study since ratios of emission
intensity between particular wavelengths bear information on
the characteristic energy of the precipitating particles and ac-
cordingly the altitude profile of the auroral emission.

As an inverse problem, Gustavsson et al. (2001b) ex-
pressed the above integral over energy as a simple “mixed de-
termined” system of linear equations specified by the transfer
matrix T as

3λ(zi ) =
∑

i

Ti, j f0(E j ) (1)

and estimated primary electron spectra from the altitude dis-
tribution that was derived from two station images with a thin
sheet assumption (Gustavsson et al., 2001b). Subsequently,
the electron distribution function is calculated by inverting T
as

f0(E) = T −134278(z) (2)

We propose to combine these inversion approaches for exci-
tation and ionization observations, i.e., observations ofauro-
ral luminosity and electron density enhancements, in a statis-
tical sense to infer the energy spectrum of precipitating par-
ticles from the magnetosphere. In our scheme, minimization
or optimization in this inverse problem is converted to find-
ing a Bayes model that will give the most probable function
model, as well as the relative significance of each type of
input data used in the calculation.

In the following sections, we will present a formulation for
comparing the excitation and ionization with observationsof
aurora, cosmic noise absorption, and electron densities; then
propose an inversion algorithm based on Bayes principle to
infer the particle spectrum of the primary auroral electrons.

2 Basic concepts and fundamental equations

An inverse problem in tomography is generally associated
with the forward convolution process as

K3 ≡

∫

k(y, x)3(x)dx = g̃(y) (3)

Here g̃(y) is the observed column emission rate of image
pixel at y, 3(x) the volume emission rate in a voxel atxand
k is an integral kernel corresponding to the image projection
from x to y. This integration inevitably implies smoothing
and increase of entropy, i.e., loss of information and hence
with a limited number of noisy observations the inversion
becomes an ill-posed problem.

If the back projection or approximate inverse operator of
K is K̄ , the i+1 th iteration for retrievingf can be expressed
as

3(i+1) = 3(i) + K̄ (g̃ − K3(i)) (4)

wherei is the index for iteration number. Algebraic recon-
struction methods such as ART, MART and SIRT are used
for this iteration. Our analysis has been mostly relying on
the SIRT method for its better robustness to noise.

The other approach, the optimization model, defines an
appropriate “functional” and optimizes it. A functional tobe
minimized is

|K3 − g̃|2 + �(3) (5)

where�(3) represents the functional term for unbiased con-
straints of the smoothness structure in3.
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In the present approach of integrating available informa-
tion on particle precipitation, we begin with an optimization
model in which the following functional

pl( f0; w1, w2, w3) ≡ l( f0; w1, w2, w3) + �( f0) (6)

is to be minimized with respect tof0 for given hyper-
parameter valuesw1, w2, w3.

l( f0; w1, w2, w3) ≡ w1

i=6
∑

i=1,λ

∑

u,v

∣

∣

∣

∣

∣

∣

∣

ci (θ, λ)

∫

l(θ,φ)

e−aλ/ cosθ

|r(l) − r i |
2
3(r(l), f0)dl − g̃i (u, v, t)

∣

∣

∣

∣

∣

∣

∣

2

+ w2

∣

∣

∣q̄(r , f0) − αñ2
e(r , t)

∣

∣

∣

2

+ w3

∣

∣

∣

∣

∣

∣

∫

60−100km

aω
ν

ω2 + ν2

√

q̄(r , f0)

α
ds − b̃64(u, v, t)

∣

∣

∣

∣

∣

∣

2

(7)

Symbols are as follows.l: line of sight, r : point in space,
r i : observation point,aλ: atmospheric absorptivity,̃b64: ob-
served radio wave absorption,ci : sensitivity and vignetting
factor,θ, ϕ: zenith and azimuthal angle,ñe: observed elec-
tron concentration,α: effective electron recombination rate,
λ: wavelength,w1 − w3: weighting factors,aω: specific ab-
sorption atω, ω: riometer angular frequency,ν: electron -
neutral collision frequency. Also3(r) andq(r) are deter-
mined by integratingfo(Eo) as in Eqs. (1) and (2). In the
abovel( f0; w1, w2, w3) is composed of three parts: (1) An
aurora tomography part with e.g. six images, (2) an elec-
tron density profile part for energy range of 0.2-50 keV, and
(3) an imaging riometer part for energies greater than 10keV
with e.g. 8x8 receiving beams. Of course, we should be
deliberate on the differences in spatial resolution of the re-
spective data sets and also on the horizontal inhomogene-
ity of precipitating particle energy. Specifically an EISCAT
radar observation mode using beam scanning might be more
preferable in discrete aurora which has large spatial gradi-
ents in electron precipitation, leading to sharp gradientsin
the ionosphere. To optimize the EISCAT observation for the
inversion proposed here, antenna scanning will provide ad-
ditional information about the spatial variation, widths and
precipitation characteristics of such structures. For uniform
diffuse aurora with less spatial gradients in the ionosphere
scanning the radar beam will not give us much additional in-
formation, but might rather reduce the temporal resolution
that might be more interesting for this case, e.g pulsating au-
rora. In the minimization, we usually add�( f0) as a smooth-
ness constraint. By putting Eqs. (1) and (2) into Eq. (7), we

can solve for the electron energy spectrumf0(E0) at the top
of the ionosphere. In this case, atmospheric structures and
composition can also be parameters to be inferred.

3 Conversion to a Bayesian model

Observed data are usually finite and limited and at the same
time susceptible to stochastic errors. On the other hand,
physical models expressed in the above integral include
many assumptions and approximations. If we denoteM as
a model which delineates the forward process andD as ob-
served data, the posterior probabilityP(M |D) for modelM
when dataD are at hand is expressed by the Bayes’ theorem
as

P(M | D) =
P(D | M)P(M)

P(D)
=

P(D | M)P(M)
∑

M P(D | M)P(M)
(8)

whereP(M)andP(D|M)are the prior probability for model
M taking place and the probability of dataD for the assumed
modelM or the likelihood of observed data as a function of
model parameters, respectively.

Relying on this, we will convert the optimization model
into a Bayesian model formulation, adapted to “multi-
modal” stochastic data with the forward model based on
our approximate understanding and knowledge of the iono-
sphere. Maximizing a posterior probability leads to model
parameter determination with sophisticated adjustment of
hyper parameters of the relative contribution of three terms,
being based on data Tanabe (2004).

Now we define a Bayes model as

f ≈ f d(φ) (9)

that expresses modelf by a finite number of parametersφ.
For smoothness constraint, vanishing approximated second-
order derivative might be appropriate.

�d(φ) ≡ �( f d(φ)) (10)

Then the likelihood of data for assumed modelP(D|M) is
defined as

Lξ (g̃, φ) ≡
exp

(

−l( f d(φ))
)

Nl(w1, w2, w3)
(11)

in which l is a residual defined in Eq. (7) andNl is a normal-
ization factor which is an integration of the numerator byφ.
Very little prior knowledge of parametersφ before getting
data corresponding toP(M) is likewise expressed as

5(φ) ≡
exp

(

−�( f d(φ))
)

Nπ
(12)

Here,Nπ is a normalization factor. Hence the posterior dis-
tribution for parametersφ when datag are given or, equiv-
alently, the probability of model parameterφ being realized
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Fig. 1. Concept of generalized aurora CT

under the condition of given datag is expressed by Bayes
formula Eq. (8) as

5ξ (φ, g̃) =
Lξ (g̃, φ)5(φ)

∫

Lξ (g̃, φ)5(φ)dφ
, (ξ = (w1, w2, w3))

(13)
A denominator is a marginal likelihood which is a projection
by integrating out model parameters and represents the prob-
ability of obtaining the present datag̃. Maximizing the above
posterior distribution function with respect toφ, corresponds
to the minimization of the optimization model.

The estimation procedure proceeds in the following
way. We search for the hyper-parameter setξ =

(w1, w2, w3) which attains maximum of marginal likelihood
M L(ξ) =

∫

Lξ (g̃, φ)5(φ)dφ at ξ̂ = (ŵ1, ŵ2, ŵ3). This
set determines the relative weight of the three input data sets,
aurora brightness, electron density and cosmic noise absorp-
tion. In step two, we obtain an estimatef ≡ f d(φ̂) by
determining model parametersφ which maximize the poste-
rior distribution function5ξ̂ (φ, g̃) and minimizes the func-

tional pl( f d(φ); ŵ1, ŵ2, ŵ3) ≡ l( f d(φ); ŵ1, ŵ2, ŵ3) +

�( f d(φ)). This completes the present algorithm. This
two–step procedure is a so-called empirical Bayes method.
In other words, the hyper-parameter set andf0(E0) are
searched that give the maximum marginal likelihood. The
search is separated into an "inner" problem where for each
set of hyper parameters we search for the optimalf0(E0).
This then makes up the optimal likelihood function for the
corresponding set of hyper parameters which is the “outer”
target function to maximize. The whole procedure is illus-
trated as a diagram in Fig. 1

The initial differential energy flux spectrum at the top of
the atmospheref0 can be described either as

f0(E0)d E = C Eγ
0 exp(−E0/Ē0)d E0 (14)

with model parametersγ and characteristic energȳE0 in a
possibly simple form or through node values of spline-type
form. Also the termsA(z) andB(z) includes parameters for
atmospheric structures and relevant ionization and excitation
processes. The numbers of parameters depend on the avail-
able quantity of orthogonally independent data and also on a
trade-off with the computing time for global search for max-
ima in the aforementioned procedures.

4 Discussions, suggestions and summary

A proposed model of generalized aurora tomography is given
which aims at integrating information from ALIS, EISCAT
and imaging riometers to estimate comprehensive differen-
tial electron energy spectra through a Bayesian statistical ap-
proach. The tentative formulation is targeting the initialen-
ergy spectrum at the top of the atmosphere through energy
deposition and ionization. Janhunen (2001) did a generaliza-
tion of spectroscopic ratio methods to off-zenith viewing di-
rections to retrieve electron precipitation characteristics from
a set of multiwavelength all-sky auroral images. In our ap-
proach, further comparison between the Bayesian method
suggested and the conventional approach of solving the prob-
lem stepwise, i.e., first the tomographic inversion from the
images to the three-dimensional volume emission followed
by an estimate of the electron spectra remains. In both cases,
establishing relevant forward models are really important.
Also an intermediate way of integrating multi-instrument
data can be suggested in which 3D aurora emission struc-
tures reconstructed from conventional aurora tomography is
adjusted or modified by comparing electron density and ab-
sorption calculated by retrieved primary spectra with obser-
vations. Also, neutral composition can or should be a target
for reconstruction together with energy spectrum at the top
of the atmosphere.

Geophysics is in principle an inverse problem based on
“observation” and then “induction” which derives theory or
structures from data. Geophysics problems are frequently
“under-determined” or mathematically “ill-posed”. Whereas
“deduction” is a cause-&-effect argument as in e.g. com-
puter simulation and is in principle a forward and logically
well-defined approach, comprehensive induction exploiting
heterogeneous data can do more convincing and versatile de-
convolution. The present approach assumes some kind of
steady-state condition and temporal variation is not seriously
taken into account. But it will hopefully contribute to the re-
construction of auroral excitation in a statistical sense with
less constraints and more flexibility and will help understand
more comprehensibly aurora formation processes.
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