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Abstract

Niar en hogfrekvent elektromagnetisk vag skickas upp i jonosfiren kan den ex-
citera manga olika typer av processer i radiovagens reflektionsomrade. Vissa av
plasmaprocesserna sander i sin tur ut elektromagnetisk stralning, vilken kan tas
emot av antenner pa jorden. Information om dessa processer kan fis genom att anal-
ysera det mottagna spektrat. I detta arbete analyseras spektrat genom att olika de-
lar av det korskorreleras. Genom att jamfora korkorrelationen for vitt brus med ko-
rskorrelationen i det mottagna spektrat visas att stralningen sa som den detekteras
pa marken har samma karaktir som vitt brus, &ven om stralningens frekvensspek-
trum dr systematiskt strukturerat. Det visas dven, att standardavvikelsen &r kon-
stant nir antalet varden i medelviardesbildningen 6kas. Detta dr vad som &ven
observeras da signalen bestar av vitt brus.

When a high frequency electromagnetic wave is transmitted into the ionosphere,
many types of processes can be excited in the wave reflection region. Some of these
plasma processes in turn emit electromagnetic waves, which can be received by
antennas on the ground. By analysing the received spectrum, information about
the processes can be obtained. By comparing the cross-correlation for white noise
with the cross-correlation for different parts of the spectrum, it is shown in this
work that the radiation detected on the ground has the same character as white
noise, although the frequency spectrum of the detected radiation is systematically
stuctured. It is also shown that when averaging the cross-correlation values, the
standard deviation stays more or less constant when increasing the number of values
in the mean. This is also the case when the signal consists of white noise.
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Chapter 1

Introduction

Almost everywhere we look, we see time series. It could be the variation
of sunspots, ocean waves or electric signals from the brain. A part of the
time series analysis is the spectral analysis which is used frequently and
extensively in many areas of the physical sciences.

The time series in this work comes from measurements of Stimulated
Electromagnetic Emissions, or SEE for short. SEE is the radiation you get
from Earth’s ionosphere when you perturb the plasma located there with a
powerful high frequency electromagnetic wave. This radiation was discov-
ered in 1981 while performing experiments with high frequency waves at the
Heating facility near Tromsg in Norway. The high frequency waves trans-
mitted from the ground excited many types of processes in the ionospheric
plasma that in turn emitted electromagnetic radiation. It now became possi-
ble to study non-linear processes excited by high frequency pumping without
the need of probing electromagnetic waves, such as used in radars.

Just a time series does not show much information, but a Fourier trans-
form of the series and a plot of the corresponding power spectrum, provides
a clearer picture. Now the different spectral features can be seen and con-
clusions about their origins can be drawn. There is, however, more informa-
tion buried in the time series than the power spectrum shows. More refined
methods must therefore be employed.

The year 1948 marked the beginning of modern spectral analysis when
John W. Tukey and Maurice Barlett independently took a crucial step.
Tukey took the cosine transform of the auto-covariance and found the power
spectrum [3]. Since then there has been great development in the area of
spectral analysis, not the least thanks to the enormous increase in compu-
tational power. Large amounts of data can now be handled and analysed in
a multitude of ways.

In this work, the data from two experimental campaigns has been anal-
ysed with a method called cross-correlation. It is a statistical method that
can correlate different parts of, for example, a spectrum. Or, in other words,
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check if there is some connection between two spectral features.

Today, still very little is known about the SEE. Certain theories exists,
which try to explain how these processes are excited. But some theories
contradict each other. It is the aim of this work to begin to look at the
signals from the experiments, initiate further investigations and perhaps
shed some light on the different types of processes; to confirm or contradict
the theories available.



Chapter 2

Earth’s Ionosphere

As most people probably know, Earth has an atmosphere consisting of dif-
ferent gases, mostly hydrogen, nitrogen and oxygen. If it had not been for
the sun and cosmic rays, the atmosphere would have remained neutral, that
is not ionised, and there would be no ionosphere.

2.1 Creation of the Ionosphere

Earth is constantly bombarded with high energy photons from the sun and
high energy particles from our galaxy. If the photons have the right energy,
they may ionise the neutral atoms in Earth’s atmosphere. Typically, solar
photons in the “extreme” ultraviolet and the ultraviolet wavelength range
produce the dayside ionosphere. The high energy particles may also ionise
(precipitate) the neutral atoms if they have more energy than the binding
energy of the atoms. A high energy particle may ionise more than one atom
if it has enough energy, since it looses energy gradually at each ionisation
as it moves through the atmosphere. A photon is, however, absorbed in a
single event. The ionisation process produces free electrons and ions in a
mix, called a plasma, which constitute Earth’s ionosphere [4].

Because of the gradient in the atmospheric density (the density is higher
on the ground than at an altitude of, say, 300 km) and the fact that the
photon flux and particle energy flux decreases with decreasing altitude, the
ion density will produce peaks at certain altitudes depending on the mech-
anism of ionisation. Of course the free electrons and ions can recombine
to form neutral atoms again, so a state of equilibrium is reached where
recombination is balanced by ionisation.

2.2 Determining Ionospheric Density

Since the ionosphere consists of charged particles, it would be expected
to interact with an electric field, such as that in an electromagnetic wave.

3
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Indeed, that is what is seen when an electromagnetic wave is transmitted
into the ionosphere.

The plasma can, if disturbed, oscillate with a certain frequency deter-
mined by the electron density. High density means that the electrons are
close to each other and disturbances can propagate with higher speed than
if the electrons were separated by a greater distance. If an electromagnetic
wave with frequency lower than the ionospheric plasma frequency is trans-
mitted into the ionosphere, it will “bounce” back to Earth. This can be
utilised when transmitting a radio message around the world. If the fre-
quency of the electromagnetic wave is higher than the plasma frequency,
the wave can propagate into space. Thus, the ionosphere sets a lower limit
to the frequency we can use in our communication with space.

Transmitting an electromagnetic wave of known frequency vertically into
the ionosphere and noting the delay time if it bounces and returns, it can be
calculated at what height it bounced and the plasma density at that height.
This is done with an ionosonde.

2.3 Plasma Density Profile

By sweeping the frequency the ionosonde gives a picture of how the plasma,
density in the bottom side ionosphere varies with altitude. At the dayside of
Earth, this plasma density profile shows three prominent peaks called the D,
E and F region. The D region is located below 90 km which means that only
the most energetic ionisation sources can reach this region. The E region
located between 90 and 130 km is mostly produced by ultraviolet radiation
(100-150 nm) and solar x-rays (1-10 nm), and therefore almost disappears
on the night side of Earth. The F region is the most prominent peak in the
plasma density profile and it is located above 130 km [4].

Increasing the power of the electromagnetic wave transmitted into the
ionosphere, it can cause turbulence in the plasma. In the turbulence elec-
trons are accelerated whereby they emit electromagnetic radiation. By
studying these phenomena, new insight in plasma processes can be gained.
This takes us to the next section which deals with these experiments.



Chapter 3

Stimulated Electromagnetic
Emissions

When a powerful high frequency electromagnetic wave, a pump wave, is
transmitted into the ionosphere from the ground, it can excite many types
of processes in the plasma. Some of these processes emit electromagnetic
radiation, called stimulated electromagnetic emissions (SEE), with frequen-
cies around the pump wave frequency fo. This radiation can be studied with
a variety of techniques, for example by just monitoring the electromagnetic
radiation on the ground. The pump frequency used is of high frequency
(HF), that is a few MHz, near the plasma frequency in the area of interac-
tion, usually at an altitude of 200-300 km. The spectral width of the SEE
is of the order of 100 kHz [1]. Depending on the frequency and duty cycle
of the pump wave, different spectral features can be observed in the SEE
spectrum. This is schematically illustrated in figure 3.1.

For long pump duration, that is high pump duty cycle, the downshifted
maximum (DM) is a prominent feature. It is observed to be downshifted
about 8-12 kHz (Af- = Afpy = 8 — 12 kHz) from the pump frequency.
When approaching the critical frequency of the ionospheric plasma from
above, the DM is the first spectral feature to be excited. The DM feature
can not be seen when the pump wave is close to a multiple of the electron
gyro frequency f, [1].

The DM can also be followed by a cascade of nDM (n = 2,3,4) emis-
sions, each successively weaker and at successively lower frequencies [1]. The
2DM is typically downshifted with 1-2 kHz less than 2A fps. Experiments
indicate that the 2DM is excited through the lower half of the DM spectrum
in a cascade type process [1].

Associated with the DM is a upshifted maximum (UM) located upshifted
from the pump wave at about the mirror frequency of the DM, and 10-20
dB weaker in amplitude than the DM [1].

Another SEE spectral feature is the broad upshifted maximum (BUM).

5
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FI1GURE 3.1: Schematic diagram of SEE spectra for long thermal time scales
for different pump wave frequencies fy relative to sfe (s > 3), where fe is
the electron gyro frequency. The spectrum changes as we pass the electron
gyro frequency from below. Taken from [1].

This feature exists above the pump frequency at Af, ~ 15 — 200 kHz and
is excited for fy close to and slightly above multiples of the electron gyro
frequency sf.. It has been observed for s =3 — 7 [1].

In the present work the cross-correlation between 2DM and DM, DM and
BUM, DM and UM, within the BUM and within another spectral feature
called the broad continuum (BC), appearing below the DM, will be studied.
Data considered comes from two experiments performed at the Sura facility
near Vasilsursk, Russia, in 1998 and at the EISCAT-Heating facility near
Tromsg, Norway, in 1999. The data files are labelled sura98_n and trom99_n,
respectively, where _n denotes the file number.



Chapter 4

The Quadrature Detector

The SEE are received by an antenna on the ground connected to an analogue-
to-digital converter. No intermediate electronics, such as amplifiers, filters
or detectors, are employed; the signal is sampled digitally directly from the
antenna [5]. The output sample rate from the analogue to digital converter
was in the Sura 98 and Tromsg 99 campaign set to 320 kHz. A digital version
of the quadrature detector discussed below was then applied on the digital
signal to get the in-phase and quadrature-phase channels. For simplicity
only the analogue quadrature detector will be discussed below, to give an
idea of how it works.

To get some information, for example the phase, from the SEE detected
by an antenna a detector of some sort is used. The quadrature detector
schematically illustrated in figure 4.1 takes the signal, A(t), received from
the antenna and passes it through a band-pass filter to extract the frequency
components of interest. The signal is then normally (but not in the case
of the SEE data) amplified and fed through a power splitter, which splits
the signal into two parts. Fach signal is then fed through a mixer which
multiplies its two incoming signals. One signal is the output from the power
splitter and the other from a local oscillator. If the local oscillator signal is

L(t) = Er cos(wpt + ¢r.)
and the incoming antenna signal is assumed to be
A(t) = Eg cos(wot + ¢o) + E— cos(w—t + ¢_) + E4 cos(wit + ¢)

the output signal from the detector is

O(t) = A(t)L(t) = Egcos(wot + ¢o)Er cos(wrt + ¢r)
+ E_cos(w_t + ¢_)Ey cos(wrt + ¢r)
+ E; cos(wit + ¢4 )Er cos(wrt + ¢r). (4.1)
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where wy is a central frequency component and w_ and w4 are downshifted
and upshifted frequency components, respectively and ¢g, ¢—, ¢4 are ar-
bitrary phases. This can be rewritten with some help from trigonometric
relations as

o(t) = %EOEL{COS[(WO —wr)t+ (¢o — ¢r)] + cos[(wo + wr)t + (do + ¢r)]}
+ %E,EL{cos[(w, —wr)t+ (¢ — ¢r)] + cos[(w— +wr)t + (¢ + é1)]}

+ %E+EL{COS[(UJ+ —wr)t+ (¢4 — ¢1)] + cos[(wy + wr)t + (o4 + ¢1)]}
(4.2)

If the frequency of the local oscillator, wy,, is chosen to be close or of the
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FIGURE 4.1: Schematic diagram of the quadrature detector. The antenna
signal A(t) is processed to give a quadrature- (Q(t)) and a in-phase (I(t))
signal. After [2].

same order as the frequency wgy, we see that the difference terms in equation
(4) will be of low frequency, while the sum terms will be of high frequency.
Filtering the output signal O(t) through a low-pass filter will remove the
high frequency terms and the result will be

I(t) = %EOE'L cos[(wo — wr)t + (do — ¢1.)]
+ %E_E'L cos[(w— —wr)t + (¢— — ¢1)]
+ %EJFEL cos[(wy —wr)t + (¢4 — or)]. (4.3)

If wy, = wp it can be seen that the signal (4.3) will consist of one constant
term and two oscillating terms. Thus, frequencies equal to wy, will be shifted



to zero frequency. This is advantageous, since the sampling frequency need
not be so high to cover the frequencies of interest, if the antenna signal is,
for example, in the megahertz frequency range.

The second signal from the power splitter is multiplied by the same local
oscillator, except that a 90° phase delay is added to the local oscillator. This
is equal to multiplying by a sine wave and we get after filtering the signal
through a low-pass filter

1 .
Q(t) = EEOEL sm[(wo - wL)t + (¢0 - ¢L)]
1 .
+ EE_EL sinf(w- —wr)t + (¢— — ¢1)]
1 .

+ 5B Bpsinf(wy —wr)t + (44 — ¢r)]- (44)

The output in (4.3) is called the in-phase channel and the output in
(4.4) is called the quadrature-phase channel. These two channels can be

considered to be a complex-valued signal S(t) = I(t) + iQ(¢), called the
analytic signal.
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Chapter 5

Digital Signal Processing

Just the plain time series from the antenna does not give much information.
It must be analysed by some means. One way to get more information from
the time series is to do a Fourier transform of the same and plot the power
spectrum P(w) = Y° X (#)X*(t)e”“!, where X (t) is the time series and
the asterisk denotes the complex conjugate. This gives information about
the distribution of the signal over frequency. There is, however, more infor-
mation buried in the time series that disappears when the power spectrum
is calculated. To extract that information, higher order spectral analysis
methods can be used. The next sections deals with the cumulants, which
are the fundamental building blocks for spectral analysis, and their spectra.

5.1 Cumulants and Cumulant Spectrum

Having a stationary time series X(¢), t = 0,£1,... with the vector compo-
nents X,(t), a =1,...,r and E|X,(t)|¥ < oo, we define [6]

Caryoag (15 -5 tg) = cum (X, (t1),..., Xq, (tr))

forai,...,ap =1,...,rand ty,...,t; = 0,%1,.... The quantity c,, . q, (t1,---

is called the joint cumulant of order k of the series X(¢).

The rth order joint cumulant cum(Ys,...,Y;) of (Y1,...,Y;) is defined
by the coefficient of (Zgn, n = 1...r in the Taylor series expansion of

K (&) = In{¢(¢)}, the cumulant generating function, about the origin, where
#(&) is the characteristic function

¢(£) = Zprei‘syr .

Some of the properties of cum(Y3,...,Y;) are:

i. If (Y7,...,Y;) can be divided into two or more groups independent of
each other then cum(Yy,...,Y;) =0

11
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ii. If (Y1,...,Y;)and (Z1,..., Z,) are independent, then cum(Y1+Z1,...,Y,+

Z,) = cum(Yy,...,Y;) + cum(Zy,...,Z,)
iii. cumY; = E[Y;] for j =1,...,r

Here E[] denotes the expected value.
If the series X(¢) is stationary up to order k, we define the second order
spectrum of the sub-series X, (¢) with the sub-series X;(t) as

o0

fab(w) = Z Cab(u)e_iwua (51)

U=—00

where cgp(u) = cap(t + u,t) [7]. fap(w) is called the cross-spectrum. When
a = b it is just the power spectrum P(w).

All this can be extended to the kth order and we get a kth order cumulant
spectrum, fo, . q (W1,...,wk_1):

e} k—1
fal,...,ak (wla LR ,(Uk_l) = E Cay,...,ap (U]_, LR ,Uk_l) €xXp —1 E ujw]
ULy Uk —1 ]:1
for —oo < wj < o0, ai,...,a=1,...,7, k=2,3.... Since when the series

X(t) is stationary,
Cay,...,ax (tl + Uyen atk + U) = Cay,...,ap, (t17 cee atk)a

we can remove this redundancy by using the notation [7]

Cay,...,ax (tla .. ’tk‘—l)-

A cumulant spectrum of order 3 is called a bispectrum Bx:

o0

ENEEEDY cx (ug, ug)e Hmwituzws)
U1,u2=—00

with cx (u1,u2) = E[X (¢) X (¢t + u1) X (t + ug)]. The bispectrum can also be
written as [8]

A ~ A~

Bx (wl, wg) = E[X(LU1)X((U2)X* (w1 + (,UQ)]

where X denotes the Fourier transform of X and the asterisk the complex
conjugate. This shows how the bispectrum estimates the statistical depen-
dence between three waves. If the waves present at wi,ws and wi + wo are
uncorrelated with three different phases randomly distributed over (—m, ),
the averaging will cause the bispectrum to vanish [8]. If the waves are lin-
early coupled, however, the phases will not be random and the averaging
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will not result in a zero value of the bispectrum. This also follows from the
property 4. in the list of properties of the cumulants above.

To compensate for the different amplitudes in the spectra for different
frequencies and thus get a quantitative measure of the phase coherence be-
tween the waves, one can make use of the bicoherence spectrum, which is
basically the bispectrum normalised by the auto-power spectrum [9]:

|B(w1, wa)| .
\/P(w1)P(w2)P(w1 + wo)

b(wi,ws) = (5.2)

Using Schwartz’ inequality, one can show [10] that the bicoherence spec-
trum is bounded by 0 < b < 1.

5.1.1 A Numerical Example of Bicoherence

140

60 - B

401 g

20 B

n . i L
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

F1GURE 5.1: The power spectrum of the test signal X (t) in equation (5.3)
containing three waves with phases that satisfy 8, = 0+ 0. and added noise.

To test the theory presented above, a test signal was created as follows
(the steps are more or less the same as in [8]):

i. A set of 64 data records, each consisting of 128 data points was created,
using the test signal

X (t) = cos(wpt + 6p) + cos(wet + 6;) + cos(wqt + 64) + g(t)  (5.3)

where ¢(t) is added noise.
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500 O
Frequency (Hz)

FI1GURE 5.2: The squared bicoherence spectrum of three waves with phases
that satisfy 04 = 0, + 0. and added noise. The power spectrum is shown in
figure 5.1.

ii. The mean value was subtracted from each record.

iii. The Hamming data window was applied to each record to reduce spec-
tral leakage [6]. See section 5.3 for an introduction to windows and
appendix A.l for the MATLAB code.

iv. The Fourier amplitudes was calculated, using the FFT technique [11]:

1 128 i2rnt
kel (‘) _ = —'L.ﬂ"n
£ = 35 2 X0

where n = 1,...,128/2 and i = 1,...,64. Note that ¢ is the position
in the vector of values, that is, not continuous time.

v. The bispectrum was calculated using

64
1 = o/ oo i
B(n,m) = ¢ XOXDXD
i=1

Further, equation (5.2) was used to normalise the bispectrum. All this can
rather easily be done in, for example, MATLAB (see appendix A.2 for the
program code).
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First, the frequencies of the three oscillators were chosen to be f, = 100
Hz, f. = 175 Hz and f; = fy + fc = 275 Hz. The phases of oscillators b and
¢ were with certain time intervals chosen randomly from (—m, 7). The third
oscillator, d, was given the sum of the phases of oscillators b and ¢, that is,
04 = 6y + 0.. The power spectrum is shown in figure 5.1 and the squared
bicoherence spectrum in figure 5.2. It can be seen that strong coherence
exists between the waves at frequencies f; = 100 Hz, f. = 175 Hz and their
sum frequency fq = 275 Hz. This is due to the consistency of the phases
of oscillators b, ¢ and d. The bicoherence spectrum is limited by the region
0< fi<oo, 0< fo < f1[12).

Next, the phase of the d-wave was also chosen from a set of random
numbers distributed over (—m, 7). The power spectrum of this signal is
shown in figure 5.3. Tt is evident that this power spectrum is very similar to
the power spectrum in figure 5.1; no difference can be seen, except for the
amplitude differences due to noise. It is obvious that the power spectrum is
unable to tell anything about the phase coherence due to any nonlinearities.
The bicoherence spectrum in figure 5.4, on the other hand, clearly shows the
lack of crrelation between the waves, since no peak at the sum frequency is
present.

Note that constant phases of all three oscillators with 6, + 8. # 04 will
produce a peak at the sum frequency, since there is still correlation between
the waves (the phases are separated equally at all time). Also, the phase
must not be changed too often, since this will “destroy” the wave.

150

100 - q

50

0 50 100 150 ) 200 250 30 350 400 450 500
Frequency (Hz)

FIGURE 5.3: The power spectrum of the test signal X (t) in equation (5.3)
containing three waves with independent phases.
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Frequency (Hz)

FI1GURE 5.4: The squared bicoherence spectrum of three waves with inde-
pendent phases and added noise. The power spectrum is shown in figure
5.3

Next, a product term was inserted, giving the following test signal, with
0y, 0. and 6; independent:

1
X (t) = cos(wpt + Op) + cos(wct + 6.) + 3 cos(wgt + 04) (5.4)
+ cos(wet + 0.) cos(wpt + ) + g(t)

The product term can be rewritten as
cos(wct + 6.) cos(wpt + Op)
- % {co8[(we — wp)t + O — O] + cosl(we + wy)t + Oe + 05])
= % {cos(wqt + 0,) + cos(wgt + 0q) }

where w, = w. — wp and 0, = 0, — Op.

As can be seen, the product produces a new wave with frequency f, =
fe — fv- The result can be seen in figures 5.5 and 5.6. A new wave, a, at
the difference frequency between c and b is seen. At fq = fp + fe, a peak of
approximately half the height of the peak in figure 5.2 is present. Since the
phase of d is uncorrelated to b and ¢, the peak must be due to the product
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interaction. Thus half the power at f; is due to product interaction and the
other half independent of this interaction. The new peak at f, = f. — fp is
entirely due to the product interaction. From the power spectrum alone in
figure 5.5 it is impossible to tell if the waves at f, and f; are generated by
interaction of the waves at f, and f,.

120 T
Cc

100 - q

60 d i

20 q

L WY, L VP ul bt el
0 50 100 150 200 250 300 350 400 450 500
Frequency (Hz)

FIGURE 5.5: The power spectrum of the test signal X (t) in equation (5.4)
containing four waves with 0y, 6. and 6, independent, quadratic coupling of
two waves and added noise.
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bz(n,m)

Frequency (Hz)

FIGURE 5.6: The squared bicoherence spectrum of the test signal X(t)
in equation (5.4) containing four waves with 6,, 6. and 6; independent,
quadratic coupling of two waves and added noise. The power spectrum
is shown in figure 5.5.
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5.2 Autocorrelation and Cross-correlation

As shown in equation (5.1), the Fourier transform of the second order cu-
mulant gives the power spectrum or the cross-spectrum. It is, however,
possible to use the second order cumulants directly as an analysis tool.
The autocorrelation and cross-correlation, the second order cumulants, are
built on the covariance function Cxx = E[(X — px)(Y — py)], where
px = E[X] = % 2521 X,,. The auto-covariance sequence of a time series is
defined as
Rocx(m) = B[{ Xnsm — nx HX; — ix}]

As seen from the equation above, it multiplies the value of the auto-covariance
at position n+m (with the mean subtracted) with the complex conjugate of
the value at position n (with the mean subtracted) through the whole series,
sums the terms for equal shift 7 and then makes a mean of the terms. The
shift m is often called the lag and runs from 0 to N — 1, where N is the
length of the series. Thus, if the signal is random, on average the terms
in the auto-covariance function for a certain m sum up to zero, except for
m = 0 when the value at position n is multiplied with the complex conjugate
of itself.
The autocorrelation function is then:

_ Rxx(m)

= Rxx(0) (5.5)

pxx(m)

This function has a maximal value of 1 (at maximum correlation), px x (m) <
1, for all m. Usually, autocorrelation is performed in the time domain,
but in this work it is performed in the frequency domain. In conventional
terminology, this is called the auto-coherence [13, 14]'.

In many cases it is more useful to use the cross-correlation, for exam-
ple when correlating two separate parts of the same spectrum. The cross-
covariance function is defined as

Rxy(m) = E[{Xntm — ux HY, — pyv}]
where px = E[X] and py = E[Y]. The cross-correlation function is defined

as
R Xy(m)
pxy(m) = . (5.6)
(Rxx(0)Ryy(0))'/2
The cross-correlation function also has a maximal value of 1 (at maxium
correlation), but differs from the autocorrelation function since the autocor-
relation always produces a peak of height 1 at zero lag (m = 0). This is
because the cross-correlation function is the “auto-correlation” function of

!There seems to be a confusion in some articles regarding the terminology in spectral
analysis. Equation (5.5) is in some articles referred to as auto-coherence and in other
articles as auto-coherence, which should be something else.
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two separate series which need not be equal at m = 0. Further, the autocor-
relation function is also symmetric about zero, whereas the cross-correlation
function most often is not.

In MATLAB, the cross-correlation function is defined as

Rxy(m) = E[Xn mY].

The function xcorr then provides a normalisation ’coeff’, that corre-
sponds to the correlation functions 5.5 and 5.6, except for the subtraction
of the means (see also [15]).

5.2.1 A Numerical Example of Autocorrelation in the Fre-
quency Domain

To test the autocorrelation in the frequency domain, the test signal (5.3),
except the frequency sum term, was reproduced:

X (t) = cos(wpt + 0p) + cos(wct + 0.) + g(t) (5.7)

Then this signal was Fourier transformed. The results are shown in figures
5.7, 5.8, 5.9 and 5.10. Figure 5.7 shows the power spectrum of the testsignal
X (t) in equation (5.7 when the phases of the two oscillators are the same.
The corresponding autocorrelation plot is shown in figure 5.8, where a peak
at lag corresponding to 75 Hz is seen, which is the frequency separation
of the two oscillators. This suggests that a correlation exists between the
waves. Next, the second oscillator was given a phase independent of the
phase of the first oscillator. The power spectrum is shown in figure 5.9 and
the autocorrelation plot in figure 5.10. As can be seen, no correlation is
indicated. It is impossible to tell from the two power spectra in figures 5.7
and 5.9 whether they contain correlated waves or not.

5.3 Windows

In section 5.1.1, where the bicoherence was tested, a data window was ap-
plied to the signal to reduce spectral leakage. This spectral leakage phe-
nomenon arises because of the finite length of the time series available. This
section begins with the Dirichlet kernel, who is the villain of the piece, and
then discusses the use of data windows, especially the Hamming window
used in this work, to reduce the effect of the Dirichlet kernel.

5.3.1 The Dirichlet Kernel

The Dirichlet kernel appears when an infinite time series is truncated and
Fourier transformed. The Fourier transform of a time series X (¢) is defined
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FIGURE 5.7: Power spectrum of the test signal X (t) in equation (5.7) con-
taining two waves with equal phases at frequencies 100 Hz and 175 Hz and
with added noise.

as
N-1
X(we) = Y X(tn)e ™, k=1,2,...,N -1
n=1
and its inverse by
= '
X(tn):ﬁ X(wg)eWrtn n=1,2,...,N—1
k=1

where i = /1.

Common sense says that time series cannot be infinite. However, the
finite time series can be seen as a part of an infinite time series. This
then corresponds to multiplying the infinite time series by a rectangular
window, a window function, that is unity on our observation interval and
zero elsewhere:

w(n) =10, n=0,1,2,...,N — 1.

Multiplication in the time domain is equal to convolution in the frequency
domain, so the Fourier transform of the original infinite time series is con-
volved with the Fourier transform of the window function w(n). The Fourier
transform of w(n) is

W) — ex —iN_lw sin(%w)
W(w) = p( 5 ) i (%w) (5.8)
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FIGURE 5.8: Normalised autocorrelation of the test signal X (t) in equation
(5.7) containing two waves with equal phases, separated by 75 Hz and with
added noise.

This is known as the Dirichlet kernel and can be seen in figure 5.11. So, the
transform of the truncated series X (wy) will be a distorted version of the
transform of the infinite series X, (wy).

The width of the main lobe of the Dirichlet kernel will smooth out peaks
in the power spectrum of the signal. If two peaks are located closer to each
other than the width of the main lobe, the kernel may fail to resolve the two
peaks and only detect one peak. Increasing N in equation 5.8 will narrow
the main lobe, making it possible to resolve the peaks. The width of the
main lobe is usually taken as the width at 3 dB below the main lobe peak.

5.3.2 The use of Windows

Because of the side lobes of the Dirichlet kernel, contribution to, say, X (wp)
will not only come from wq but also from other w where the amplitude is not
zero. This phenomenon is called spectral leakage; power from neighbouring
frequencies “leak” to the central frequency as shown in figure 5.12. At
the top row in the figure, the Dirichlet kernel is shown to the left and the
spectrum to be examined to the right. Multiplying these two, as shown in
the lower left part of the figure, contribution to wg comes also from the side
lobes (shaded areas) and the result is seen in the lower right corner, where
the resulting spectral line at wg has contribution from the shaded areas to
the left. Spectral leakage is not desirable, so another window is applied to
attenuate the side lobes of the Dirichlet kernel. There are many windows
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FIGURE 5.9: Power spectrum of the test signal X (t) in equation (5.7) con-
taining two waves with phases at frequencies 100 Hz and 175 Hz and with
added noise.

with different characteristics available (see [16] for a nice review of windows).
The equation of the Hamming window is

)
0.54 — 0.46 cos (Fﬂn) n=01,2,...,N—1.

The coefficients 0.54 and 0.46 are nearly the ones that achieve minimum
sidelobe levels [16]. This window is also easy to implement and has a rela-
tively narrow main lobe. The Hamming window used in this work can be
seen in figure 5.13.
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FIGURE 5.10: Normalised autocorrelation of the test signal X (t) in equation
(5.7) containing two waves with independent phases, separated by 75 Hz and
with added noise.
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F1GURE 5.11: The Dirichlet kernel. The coordinates are normalised with
sample period T' = 1.0, so that W (w) has the period 2.
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FI1GURE 5.13: The Hamming window. The coordinates are normalised with
sample period T' = 1.0, so that W (w) has the period 2.



Chapter 6

Spectral Analysis

In this work, data from experiments at the Sura facility near Nizhny Nov-
gorod, Russia, in 1998 and at the EISCAT-Heating facility near Tromsg,
Norway, in 1999 have been analysed.

When using continuous wave pumping of the ionospheric plasma, that
is, when not turning the pump wave on and off with defined intervals, a
stable process which can be considered to be stationary can be obtained.
Here such stationary conditions are considered.

Unfortunately, radiation at the sum and difference frequencies (of, for
example, the DM and 2DM) could not be detected on the ground, making
it impossible to carry out the bicoherence analysis. Autocorrelation in the
frequency domain is on the other hand possible to perform. It will not,
as the bicoherence, detect which two waves that interact to give the third
wave or indicate the correlation that exists between the three waves in, for
example, the test signal equation 5.3. It will instead detect the correlation
between wave b and ¢, b and d and ¢ and d separately in the same equation.

To do the autocorrelation, the complex time series from the SEE mea-
surements was divided into several smaller windows and then combined
to a matrix. Each window was tapered with the Hamming window and
Fourier transformed with the fast Fourier transform algorithm that comes
with MATLAB using as many points as there were in each window, that
is, without zero padding. A short program was written in MATLAB (see
appendix A.2) to perform the autocorrelation with the MATLAB signal pro-
cessing toolbox algorithm xcorr [15].

Another method applied was cross-correlation (see, for example, [15] or
[17]) of different parts of the same SEE spectrum. This has the advantage
of that parts of the spectrum separated by some spectral feature can be
correlated without the interference of the spectral feature between them.
As an example the DM and the BUM can be correlated without the strong
interference of the pump wave. The data was processed in a similar manner
as when performing the autocorrelation.

27
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The shortest Hamming windows consisted of 1000 to 1024 points. With a
sampling frequency of 320 kHz this gives a resolution of the window (width
of main lobe at -3 dB) of 0.392 kHz, which is sufficient for the spectral
features in the SEE data. This particular window was chosen because of
its ease of implementation, relatively small side lobes and good frequency
resolution (see [16]).



Chapter 7

Results and Discussion

In this chapter the results from the cross-correlation analyses are presented.
By comparing the results with analyses of a test signal containing white noise
it was found that the spectral features in the SEE spectra are very noise-
like, no matter what feature analysed. It was also seen that the standard
deviation of the cross-correlation remained constant when the number of
points in the mean was increased, which is the same result obtained when
doing the same analysis on white noise.

7.1 Results

The cross-correlation between different parts of the spectrum was found
to be the most useful tool, since widely separated parts can be correlated
without the interference of the spectrum in between. The autocorrelation
analyses, giving no results worthy a discussion, will therefore be omitted. A
test signal containing white noise was created to see how the cross-correlation
of such a signal would look like. The result can be seen in figure 7.1 where
the cross-correlation function has a pyramidal shape. This must not be
interpreted as maximum correlation at lag zero, because the cross-correlation
is biased due to the decreasing number of data points in the correlation at
higher lags. As discussed in section 5.2, the lag m runs from 0 to N —1, where
N is the length of the series (in this case the length of the windows). As
m increases fewer and fewer terms are included in the sum, till m reaches
N — 1, when only one term can be included in the sum and that is the
multiplication of the two values at each end of the series. No more terms
exist for which the separation between the two is N — 1.

Comparing! the cross-correlation of the white noise with the cross-corre-
lation of the signals from the SEE data, it is seen that they are very similar.

!The vertical lines in the spectra show the intervals which have been correlated and
the corresponding label tells where the interval starts and stops. Af is the width of the
windows.

29
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Figure 7.2 shows the cross-correlation of parts of the spectrum for sura98_238
where there should be no correlation. It is indeed very similar to the cross-
correlation of white noise in figure 7.1. Figure 7.4 shows a cross-correlation
within the BUM in the same spectrum, which also is reminiscent of the
cross-correlation of white noise. Analyses within the BUM have been done
in files sura98_239, sura98_240, sura98_260 and trom99_583, all with results
equivalent to figure 7.4. Figure 7.6 shows cross-correlation between the DM
and upshifted maximum (UM), which again is similar to the previous cross-
correlations. This is a mean of only 52 windows because of the short original
signal in sura98_240. The same spectral features have also been analysed in
files sura98-239 and trom99_583, giving the same results. A cross-correlation
between the DM and BUM is shown in figure 7.8 and between the 2DM
and DM in figure 7.10. The DM and BUM have also been cross-correlated
with the same results in files sura98_239, sura98_240 and trom99_523, and
the 2DM and DM with the same result in sura98_313. Thus, the cross-
correlation analysis suggests that the studied SEE data from the Sura 1998
and Tromsg 1999 experiments are noise-like. The resulting radiation from
the electromagnetically driven plasma turbulence at the location of detection
on the ground is incoherent.

test 122:136 — 380:394, Nfft = 1024 (coeff norm, mean)
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FIGURE 7.1: Cross-correlation with standard deviation of two separate parts
of a spectrum containing white noise. Mean of 400 windows.
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sura98_238 149:162 - 227:240, Nfft = 1000 (coeff norm, mean)
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FIGURE 7.2: Cross-correlation of parts of the spectrum where there should
be no correlation (sura98-238). Mean of 400 windows. See figure 7.3 for
spectrum.
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FIGURE 7.3: Spectrum for sura98_238.



32 CHAPTER 7. RESULTS AND DISCUSSION

sura98_238 558:571 - 661:674, Nfft = 1000 (coeff norm, mean)
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FIGURE 7.4: Cross-correlation within the BUM (sura98_238). Mean of 400
windows. See figure 7.5 for spectrum.
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FIGURE 7.5: Spectrum for sura98_238.
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sura98_240 467:478 - 536:547, Nfft = 1024 (coeff norm, mean)
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FIGURE 7.6: Cross-correlation between the DM and the UM (sura98-240).
Mean of 52 windows. See figure 7.7 for spectrum.
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FIGURE 7.7: Spectrum for sura98_240.
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sura98_238 460:473 — 664:677, Nfft = 1000 (coeff norm, mean)
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FIGURE 7.8: Cross-correlation of the DM with BUM, (sura98-238). Mean
of 400 windows. See figure 7.9 for spectrum.
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FIGURE 7.9: Spectrum for sura98_238.
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trom99_ 583 446:460 — 476:490, Nfft = 1024 (coeff norm, mean)
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FIGURE 7.10: Cross-correlation between the 2DM and DM (trom99_583).
Mean of 400 windows. See figure 7.11 for spectrum.
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FIGURE 7.11: Spectrum for trom99_583.
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Increasing the window length gives more data points and higher resolu-
tion and the peak value of the cross-correlation decreases. Figure 7.12 shows
cross-correlation within the broad continuum (BC) in file trom99_520 with
a window length of 1024. Again, it is very similar to the previous ones. In
figure 7.14, the window length is increased to 4096, giving a resolution of
less than 100 Hz. The peak value of the correlation as well as the standard
deviation has decreased, which is expected, since the correlation is based on
more data points. The window length is increased to 8192 in figure 7.16. No
new prominent features can be seen. The peak value and standard deviation
has decreased further.

Figure 7.4 is a mean of 400 windows and 7.18 is a mean of 1600 windows
of the same file (sura98_238). Comparing these two, it is seen that the
standard deviation is more or less constant. In figures 7.10 and 7.19 the
2DM and DM in file trom99_583 have been cross-correlated, the first figure
containing a mean of 400 windows and the second a mean of 1600 windows.
The differences in the figures are due to the extra data points included to
get 1600 windows, keeping 1024 data points in each window. This is the
same behaviour as with noise, as can be seen from figures 7.21, 7.1 and 7.22,
all showing the cross-correlation of white noise. Figure 7.21 is a mean of 200
windows, figure 7.1 a mean of 400 windows. The last two figures do not differ
much. Figure 7.22 is a mean of 1600 windows, showing a much smoother
structure due to the enhanced statistics. Cross-correlations of other spectral
features, such as within the BUM and between the DM and BUM, show the
same behaviour when increasing the number of windows in the mean.
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trom99_ 520 348:359 — 365:376, Nfft = 1024 (coeff norm, mean)
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FIGURE 7.12: Cross-correlation of the BC (trom99_520). Mean of 400 win-
dows. See figure 7.13 for spectrum.
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FIGURE 7.13: Spectrum for trom99_520.
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trom99 520 1404:1448 — 1472:1516, Nfft = 4096 (coeff norm, mean)
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F1GURE 7.14: Cross-correlation of the BC with 4096 data points per window
(trom99_520). Mean of 400 windows. See figure 7.15 for spectrum.
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FIGURE 7.15: Spectrum for trom99_520.



7.1. RESULTS 39

trom99_520 2819:2907 - 2933:3021, Nfft = 8192 (coeff norm, mean)
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FIGURE 7.16: Cross-correlation of the BC with 8192 data points per window
(trom99_520). Mean of 200 windows. See figure 7.17 for spectrum.
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FIGURE 7.17: Spectrum for trom99_520.
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FIGURE 7.18: The same cross-correlation as in figure 7.4, except that the
mean consists of 1600 windows.

trom99_583 446:460 — 476:490, Nfft = 1024 (coeff norm, mean)
0.7 .

0.6

0.5

0.4

0.3

0.2

0.1

0 %' ~ ! '&\I
-5 0 5
Frequency (kHz)

FIGURE 7.19: Cross-correlation between the 2DM and DM (trom99_583).
Mean of 1600 windows. See figure 7.20 for spectrum.
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FIGURE 7.20: Spectrum for trom99_583.
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FiGURE 7.21: Cross-correlation with standard deviation of two separate
parts of a spectrum containing white noise. Mean of 200 windows.
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FIGURE 7.22: Cross-correlation with standard deviation of two separate
parts of a spectrum containing white noise. Mean of 1600 windows.



7.2. DISCUSSION 43

7.2 Discussion

If the correlation between different frequencies is such that the resolution
must be of the order of Hertz, each window must contain a high “density” of
data points to show such a correlation. More data points per Hertz means
longer windows in the time domain. But if the processes in the plasma
have a certain coherence time, extending the windows and thus integrating
over a greater period of time to get the Fourier spectrum, may destroy this
coherence. Reducing the width of the windows narrows this risk, but also
reduces the resolution.

To get a resolution of at least 100 Hz, the number of data points in each
window must be over 3200. The lower limit of data points in each window
was found to be about 1000 (depending on the length of the original time
series; the total length of the time series must be evenly dividable with the
length of the window), since this is the shortest window giving a reasonable
amount of data points in the cross-correlation. Whether or not this length
is sufficiently short to conserve the coherence is not known. The loss of
correlation due to a too wide window is not justified by any other means
than by reasoning: Over short periods, it should be possible to consider the
process as stationary. But over greater periods of time, it may not be correct
to consider it stationary.

The number of windows with length ~ 1000 required to see any patterns
in the correlation was found to be 2 40. With a sampling frequency of
320 kHz and a window length of 1024 this corresponds to a time 7" 2 130 ms
of usable data.
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Chapter 8

Conclusion and
Acknowledgements

8.1 Conclusion

Although the cross-correlation analysis method used in this work may not be
the most refined (there are, for example, windowing methods that give much
better resolution in frequency and time) it gives a small picture of what is
going on. The complete lack of correlation in the SEE spectrum suggests
that the transmitters in the ionosphere emit radiation incoherently. This can
be caused by many processes, but one solution that is reasonable to assume
is that the transmitters are moving in either direction in the ionosphere and
thereby the resulting superposed electromagnetic radiation would appear
noise-like.

This is however far from a closed case and much more thorough research
in this area must be performed. New experimental campaigns should be
performed with these kinds of analyses in mind (for example long pump
duration should be used and strong spectral features to clearly separate
them from noise are desired). Experiments to examine why the emissions
are incoherent should also be conducted. Hopefully this work can inspire
someone to look more into this.
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Appendix A

Program Code

A.1 Preparing the Data

The time series is split into several segments with the function dela.

1  function Y=dela(y, d, 1)

2 % Function dela that takes a time series as input
3 % and divides it into d parts of length 1, subtracts and tapers
4 % each segment with the Hamming window.

5  Y=reshape(y,1l,d);

6  h=hamming(1);

7 for k=1:d

8 m=0;

9 % Mean is subtracted

10 m=mean(Y(:,k));

11 Y(:,k)=Y(:,k)-m;

12 % Multiplication with Hamming window

13 Y(:,k)=h.*Y(:,k);

14 end

Each column of the matrix output from the function dela is then Fourier
transformed:

function X=transf (x)

% Fourier transforms a matrix with data

% records as columns.

[ro col=size(x);

for k=1:co
X(:,k)=fftshift(fft(x(:,k)));

N O U W N =

end
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A.2 Bicoherence

MATLAB code for computing the bicoherence:

function b = bicohere(A)
% This function computes the bicoherence spectrum of a matrix.
% Input is a matrix with data records as columns.
[r,cl=size(A);
for 1=1:0.5%r
for k=1:1
if (k+1)<=rx0.5
% Reset all variables.
B=0;
Pk=0;
P1=0;
Pk1=0;
for i=1:c
% Calculation of the bispectrum B
B=B+(1/c)*A(k,i)*A(1,i)*conj(A((k+1l),1));
% Power spectrum for each component
Pk=Pk+(1/c)*A(k,i)*conj(A(k,i));
P1=P1+(1/c)*A(1,i)*conj(A(1,i));
Pk1=Pk1+(1/c)*A(k+1,i)*conj (A(k+1,1i));
end
% The bicoherence spectrum b
b(k,1)=(abs(B) ~2)/ (Pk*P1xPkl) ;
end
end

end

A.3 Autocorrelation and Cross-correlation
Function for computing the autocorrelation:

function [C,f]=auto(Cl, r)

% Computes the autocorrelation of a matrix with

% data records as columns.

[ro,col=size(C1);

for k=1:co
% Autocorrelation for each column
C(:,k)=xcorr(Ci(:,k),’coeff’);

end

% Frequency f used to plot the autocorrelation function.

f=(320/(r))*(-ro+l:ro-1);
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Function for computing the cross-correlation of two frequency windows:

function [C,f]=auto2(C1,C2,r)
% Computes the crosscorrelation of a matrix with
% data records as columns. C1 and C2 are the two
% frequency windows correlated.
[ro,co]l=size(C1);
for k=1:co
% Crosscorrelation of each column
C(:,k)=xcorr(C1(:,k),C2(:,k),’coeff?’);
end
% Frequency f used to plot the cross-correlation
% function.
f=rot90(rot90((320/(r))*(-ro+1:ro-1)));
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