Atmospheric Sputtering

V.I. Shematovich^{1,2}, F. Leblanc³, and R.E. Johnson⁴

¹Institute of Astronomy RAS, Moscow, Russian Federation; ²Institute of Geophysics and Planetary Physics, University of California, Riverside, USA; ³Service d'Aeronomie du CNRS, Verrieres Le Buisson, France; ⁴Engineering Physics, University of Virginia, Charlottesville, USA

The flow of solar wind and local pick-up ions onto the Martian exobase can affect the long-term evolution of the atmosphere, a process often referred to as atmospheric sputtering (Johnson 1990, 1994). Solar forcing via both atmospheric sputtering and UV absorption forms a hot oxygen corona. This corona, in turn, alters the incoming solar plasma by mass loading the solar wind with newly created ions and by charge exchange collisions. Mars-Express observations (Lundin et al. 2004) show that the incident plasma penetrates deeply into the Mars atmosphere: e.g., keV O⁺ found at 300 km are of exospheric origin accelerated by the interplanetary magnetic fields. Therefore, acceleration processes might also occur deep into the ionosphere with the planetary wind from the dayside region sweeping tailward at altitudes as low as 270 km. Pick-up ions following the field lines that are draped across Mars can either be swept away or re-impact the atmosphere with energies up to ~1 keV. Through momentum transfer collisions they can energize other atoms and molecules enhancing escape and populating the hot corona (Luhmann and Kozyra 1991; Luhmann et al. 1992; Johnson and Luhmann 1998). Unlike dissociative recombination, sputtering is non-selective and can, in principle, eject all particles that are present at the Martian exobase: C, O, CO, N, N2 and CO2 (Leblanc and Johnson 2002). In the present epoch, the sputter loss rate of O and CO₂ has been estimated to range from 3×10^{23} to 4.7×10^{24} atoms/s (Chassefiere and Leblanc 2004). This is smaller than the nonthermal escape of oxygen due to exothermic chemistry but may dominate the carbon loss. Modeling also suggests that atmospheric sputtering could have dominated in earlier epochs (Leblanc and Johnson 2001, 2002).

The physical and chemical processes leading to the formation, kinetics, and transport of suprathermal O atoms in the corona will be described. This is a computationally challenging non-linear problem. On one hand, the chemistry induced by the UV and the atmospheric sputtering cause the formation of an extended corona (*Krestyanikova and Shematovich* 2005, 2006). On the other hand, pick-up-ion formation in this corona leads to escape and enhanced atmospheric loss. This feedback process is critical in determining atmospheric loss in earlier epochs (*Johnson and Luhmann* 1998). The affect on the loss rate of the uncertainties in the energy spectra of ionospheric pick-up ions and our knowledge of the differential energy transfer cross sections will be discussed.

Chassefiere E., Leblanc F., Mars Atmospheric Escape and Evolution: Interaction with Solar Wind, *PSS.*, **52**, 1039, 2004; Johnson, R.E., *Energetic Charged Particle Interactions with Atmospheres and Surfaces*, Springer, 1990; Plasma-induced Sputtering of an Atmosphere, *Sp. Sci. Rev.*, **69**, 215, 1994; Johnson R.E., Luhmann J.G., Atmospheric Corona at Mars Produced by Pick-up Ion Bombardment, *JGR*. **103**, 3649, 1998; Krestyanikova, M.A., Shematovich, V.I. Stochastic Models of Hot Planetary and Satellite Coronas: Photochemical Source of Hot Oxygen in the Upper Atmosphere of Mars. *Solar System Res.*, **39**, 22, 2005; Stochastic Stochastic Models of Hot Planetary and Satellite Coronas: Hot Oxygen Corona at Mars. *Solar System Res.* **40**, 2006 (in press); Leblanc F., Johnson R.E., Sputtering of the Martian Atmosphere by Solar Wind Pick up Ions *PSS*, **49**, 645, 2001; Role of Molecules in Pick-up Ion Sputtering of the Martian atmosphere. *JGR* 10209/2000JE001473, 2002; Luhmann, J.G., Kozyra, J.U., Dayside Pickup Oxygen Ion Precipitation at Venus and Mars: Spatial Distributions, Energy Deposition and Consequences, *JGR* **96**, 5457, 1991.Luhmann J.G., Johnson R.E., Zhang M.G.H., Evolutionary Impact of Sputtering of the Martian Atmosphere by O⁺ Pick up Ions, *GRL* **19**, 2151, 1992; Lundin, R. + 44 co-authors, Solar Wind-Induced Atmospheric Erosion at Mars: First Results from ASPERA-3 on Mars Express, *Science*, **305**, 1933, 2004.