The role of plasma waves in Mars' atmospheric loss

L. Andersson¹, R. E. Ergun^{1,2}, W. K. Peterson¹, D. Brain³, G. T. Delory³, D. L. Mitchell³, R. P. Lin³, A. W. Yau⁴, and J. R. Espley⁵

Abstract

An analysis of recent observations of plasma waves, electron fluxes, and ion fluxes in Mars' ionosphere indicates that ion heating may have had a considerable impact on Mars' atmospheric loss. We discuss two energy sources of plasma waves: the solar wind interaction with Mars and field-aligned currents in the cusps of the crustal magnetic fields. These plasma waves can damp through cyclotron resonance with the O⁺ population in the ionosphere leading to substantial heating and subsequent O⁺ escape. These mechanisms can support ~10²⁵ atoms s⁻¹ (~0.4 kg/s) O⁺ outflow indicated by observations. We suggest that a stronger source of O⁺ ~4 Gyr ago could support losses on the order of 100 kg/s, enough to strip Mars atmosphere or 10 m of water in a ~0.3 Gyr period. The observational evidence for ion heating is, with current data sets, largely circumstantial so we suggest needed observations.

¹Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado, USA

²Also at the Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, Colorado, USA

³Space Sciences Laboratory, University of California, Berkeley, California, USA.

⁴Institute for Space Research, Department of Physics and Astronomy, University of Calgary, Calgary, Alberta, Canada

⁵Goddard, NASA, USA