

European SpaceCraft for the study of Atmospheric Particle Escape

I. Dandouras, M. Yamauchi, and ESCAPE proposal team

A mission proposal to **ESA's M5 call** to understand the atmospheric escape from the Earth, a magnetized planet.

Why atmospheric escape?

Compositions of the Earth, Mars, and Venus are so different

(e.g., D/H ratio indicates water at Mars/Venus was 0.1% of the Earth 4.5 Byr ago, and Thermal (inc. photochemical) mechanism cannot explain water)

⇒ Estimate contributions from different escape mechanisms

with different mass-filtering efficiency

How much is the Earth special in terms of habitability?

(Evolution of the atmospheric composition and ocean pH must have allowed life to survive and evolve. If the escape was too much or too little, such condition might not be satisfied. Inversely, B-field, biologic & subsurface activities played roles?)

⇒ Estimate possible roles of escape in habitability

Life might have extincted and revived many times???

(Atmospheric conditions during the life emergence is one of the key) ⇒ Estimate atmospheric evolution right after life emerged

⇒ Need independent studies from subsurface route (Subsurface inventory is large, but could recycle without loss)

Hadean	Archean	Paleo-	Meso-	Neo-	Phanarozoic
		Pro	oterozoic		Phanel 020ic

O2 model (Lyons et al., 2014)

Past N/O ratio fluctuated a lot

How much ion escape explains N/O ratio & pH changes?

Fig. 20. Plot of O2 vs time for the standard GEOCARBSULF model with

(Berner, 2006)

(Halevy, 2017)

Mission objective

To obtain the composition and flux of the atmospheric escape from the Earth and understand its effect on the atmospheric evolution.

- The first-time exploration of the exosphere to correctly model the thermal (inc. photochemical/hydrodynamic) escape.
- Determination of the dominant non-thermal escape mechanisms to evaluate relative importance of thermal and non-thermal escape.

To investigate fundamental parameters in space.

• The first-time measurements of actual efficiencies of the isotope fractionation and ionisation/neutralisation in the space environment, to estimate the past escape from a planet using the present atmospheric composition.

ESCAPE Scientific Objectives

How and at what rate is Earth slowly losing its atmosphere to space?

- 1. Build a quantitative and comprehensive picture for 500-2000 km altitudes
- Determine exospheric altitude density profiles and temperature profile as a function of different drivers such as solar EUV, solar wind and geomagnetic conditions.
- Establish isotope ratios for both neutrals and ions and compare them with those found at the Earth's surface and in other solar system objects.
- Determine **exospheric altitude profiles of ion/neutral ratios** and estimate ionisation / neutralisation efficiencies.
- Measure **temporal and spatial variations** of the density of **major exospheric species**.
- Correlate such variability with upper atmosphere parameters, and with different incident energies when particle precipitation is present.
- 2. Determine the dominant escape mechanisms, and their dependence on the drivers
- Estimate thermal escape flux for neutral and ion species for different conditions.
- Estimate the prevailing escape mechanisms and the relative importance of thermal or non-thermal escape for different driver conditions.
- Estimate the response of the ionisation / neutralisation efficiencies, isotope fractionation and the N/O ratio to different drivers.
- Estimate the degree of recirculation of plasma after it has left the ionosphere.

Escape Mechanisms of Heavy Ions/Neutrals

Туре	Mechanism	Explanation
thermal 🧕	Jeans escape (H, He)	Thermal tail exceeds the escape velocity
non-thermal	Charge exchange	Heavy (trapped) ions collide with atoms
thermal e	Momentum exchange	Light neutrals collide with heavy molecules
thermal	Hydrodynamic blow off (H, He)	Same as solar wind formation mechanism
chemical	(Photochemical heating)	Release of e.g. recombination energy of the excited state that accelerates the atom
combined	(lon pickup)	lons that are newly exposed to solar wind are removed by the solar wind ExB
non-thermal	(Atmospheric sputtering)	The energetic ions/atoms interact with the upper atmospheric molecules/atoms/ions
non-thermal	Large-scale momentum transfer & instabilities	Solar wind dynamic pressure and EM forces push the planetary plasma anti-sunward
non-thermal	lon energisation by EM waves and E _{//}	EM disturbances / static E-fields energise ions, by e.g. the ion cyclotron resonance
non-thermal,	Plasmaspheric wind & plumes	Plasma instabilities near the plasmapause
non-thermal	Boundary shadowing	Drifting ions overshoot the magnetopause

Escape Mechanisms (continued)

Type Mechanism		Where?	Δv for same T
thermal 🖉	Jeans escape	exobase (M>E≥V)	exp()
non-thermal	Charge exchange	above mirror altitude (E)	m ⁰
thermal 2	Momentum exchange	above exobase (M>V)	m ⁰
thermal	Hydrodynamic blow off	near exobase (ancient, all)	m ^{-0.5} to m ⁰
chemical	Photochemical heating	exosphere (M>V~E)	m ^{-0.5}
combined	lon pickup	outer exosphere (M, V)	m ⁰
non-thermal	Atmospheric sputtering	around and above exobase (M, V>E)	m ⁰
non-thermal	Large-scale momentum transfer & instabilities	magnetospheric boundary (E>M~V)	m ⁰
non-thermal	lon energisation by EM waves and E _{//}	upper ionosphere & magnetosphere (E>M>V)	?
non-thermal,	Plasmaspheric wind, plasmaspheric plumes	plasmasphere (E>M~V)	m ⁰
non-thermal Boundary shadowing		ring current (E)	m ⁰

What will be measured?

Basic altitude profiles in the exosphere & upper ionosphere (500–2000 km).

- Temperature and densities of major neutrals and ions (H, He, O, N, O₂, N₂, NO, and CO₂).
- Isotope ratios (¹⁷O/¹⁶O, ¹⁸O/¹⁶O, ¹⁵N/¹⁴N, D/H).
- Their **variability** in space and time (+ correlation with drivers)

Differential fluxes (energy-angle distributions) of the hot ions (N+, N2+, O+, H+, and He+) in the lower magnetosphere and upper ionosphere > 800 km.

⇒ Correlation with external drivers: solar EUV flux, solar wind, and ionospheric/geomagnetic conditions.

What will be measured?

What to measure	Target range	Particle SI*	Other SI*
Density of major neutrals and cold ions, simultaneously	neutrals 1–10 ⁶ /cc ions 0.1–10 ³ /cc	INMS, WCIMS	UVIS, SLP ASPOC
Density of minor isotopes (neutrals and ions)	neutrals 10 ⁻² –10 ³ /cc ions 10 ⁻⁴ –10 ¹ /cc	INMS	SLP, ASPOC
Neutral temperature	500–1500 K	WCIMS	density +model
The energy distribution of major outflow ions	10 ⁵⁻⁹ keV cm ⁻² s ⁻¹ str ⁻¹ keV ⁻¹	MIMS, NOIA	MAG, SLP
The flux of major returning energetic ions	10 ⁶⁻⁹ keV cm ⁻² s ⁻¹ str ⁻¹ keV ⁻¹	EMS	MAG
The energy distribution of electron and photoelectron	10 ⁷⁻¹¹ keV cm ⁻² s ⁻¹ str ⁻¹ keV ⁻¹	ESMIE	MAG
Ionospheric auroral condition	10 ²⁻⁶ R		AMC
DC/AC field energy flux into to the ionosphere	1–10 ² W/km ²		MAG, WAVES
Electromagnetic wave associated with ions	0.1–10 ³ Hz		MAG, WAVES
ENA flux for charge-exchanged keV ions	10 ²⁻⁵ cm ⁻² s ⁻¹ str ⁻¹	ENAI	

Why Earth?

Related to the past and future of the **habitable environment of the Earth**.

• **Rich database** (e.g., solar wind since 1960's) to allow probability assessment when **scaling back to the past.**

Can obtain the **best knowledge among all planets** thanks to many other measurements at and from the ground.

- Basically common exospheric structure with Mars and Venus.
- Sufficient **spacecraft resource** in the instrumentation and data transmission.
- Advantage of **ground-based** observations, e.g., EISCAT_3D.
- Subsurface route is best known.
- Some key area is less understood than Mars/Venus.

Why Earth? Amount matters skip

- Average O⁺ loss rate is about 10²⁵ ions/s.
- Increase by > 10 during storms.
- Increase by 10² during big event. \Rightarrow 10²⁷ ions/s during big events

high N/O ratio in ancient time? skip

N/O ratio increases with activity

Small number of big events may account majority of N⁺ escape 14

Why Earth? Amount matters Skip

Biosphere responds to a few % change in the atmospheric O/ N ratio (or water pH). \Rightarrow a 10% loss of nitrogen inventory in the biosphere (~ 5.10¹⁸ kg ~ 2.10⁴⁴) matters. \Rightarrow 2.10⁴³ loss of nitrogen influences the evolution of life.

- 10^{27} s⁻¹ x 600 million years (2·10¹⁶ sec) = 2·10⁴³.
- N/O ratio may reach to 1 during big events.
- **Big events are good proxy for ancient time** (according to Sun-In-Time project) with **fast solar wind** and fast rotation (**strong solar dynamo**) for young G-type (Sun-time) stars.

Non-thermal escape (of N⁺) alone could have influenced the biosphere

(in addition, subsurface circulation influences too).

Advantage of the Earth Covering area of EISCAT 3D

High sensitivity in more than 500 km diameter (grey area) ≈ 15° longitudinal range.

5 % of polar orbits traverses this region in average.

╋

More conjugacy if we consider geomagnetic tracing.

+

Remote sensing can target this area from distance.

Why Exosphere?

<u>Mandatory for thermal (inc. photochemical) escape modeling</u> (For thermal and some non-thermal escape)

Dynamic and structured

(Mars observation indicates unknown controlling factors other than EUV, e.g., atmospheric coupling)

Poor observational knowledge for the Earth

(No knowledge of > 800 km for nitrogen, > 1500 km for oxygen, and all altitude for isotope ratio)

Generate seeding cold ions through ionisation

(They contribute feeding ions of non-thermal escape)

Determine charge-exchange escape of trapped ions

(Including magnetopause shadow, majority of return flow from the tail will finally escape, and important input in estimating ENA flux)

Exosphere = thermal/photochemical

Mandatory for thermal (inc. photochemical) escape modeling

height	surface	500 km		2000 km			
	velocity	O (eV)	N (eV)	H_2 (eV)	O (eV)	N (eV)	H_2 (eV)
Earth	11 km/s	9.7	8.	1.2	8.0	7.0	1.0
Venus	10 km/s	8.2	7.2	1.0	6.7	5.8	0.8
Mar	5.0 km/s	1.8	1.6	0.23	1.3	1.1	0.16
Moon	2.4 km/s	0.5	0.4	0.06	0.31	0.27	0.04

before		after	extra energy
O ₂ ⁺ + e-	>	20	3–7 eV
N ₂ ⁺ + e-	>	2N	3–6 eV
N + O ₂	>	NO + O	2–4 eV

Why Exosphere? poor knowledge

No systematic in-situ observations > 800 km

Exosphere: structured & dynamic

Exosphere: structured & dynamic

Model-fitted GUVI observation for 27 July 2004. (*Meier et al., 2015*) during magnetic storm (F10.7=128, Ap = 186). Temperature increased summer auroral region

No dedicated Exospheric missions

Mission	UV instrument	Particle instrument
IMAGE	Lyman-alpha	ENA
TWINS	Lyman-alpha	ENA
GOES	Lyman-alpha	hot ions
TIMED	multi-wavelength (thermosphere)	
Hisaki	multi-wavelength (planetary)	
Polar		hot ions
Cluster		hot ions
Akebono		cold ions with N/O separation, hot ions
e-POP		cold ions with N/O separation

Why exosphere?

(Mars Express) newly-formed cold ions

- >10 ion flux change by 20% change in Sun-Mars distance
- >3 ion flux change within 7 hours

Why isotope ratio?

Used as indicator of (thermal) escape from planet, but only qualitatively

(isotope ratios are different between different escape processes)

Gives important information on hydrostatic thickness (the dependence is also exponential to the mass x thickness) ⇒ We expect both temporal and horizontal variation (MAVEN detect it)

Poor knowledge for the Earth's upper atmosphere

(no systematic observation in the magnetosphere/ionosphere for seeding population, and the mass-filtering depends on ionization altitude)

(Marty et al., 2013)

(Robinson et al., 2015)

¹⁵N/¹⁴N ratio ~ acid level

Ice core observations of NO₃ past 200 years

(Geng et al., 2014)

Why isotope ratio?

Hydrostatic pressure scale heights h is inversely proportional to the mass of atoms/molecules.

 \Rightarrow H, D, ¹⁶O and ¹⁸O, h_H = 2*h_D = 16*h₁₆ = 18*h₁₈ (where h_H~300 km for the Earth's ionosphere)

 \Rightarrow when T is constant, $n_D/n_H \sim exp(-z/h_H) \& n_{18}/n_{16} \sim exp(-2*z/h_H)$

\Rightarrow Scale height of isotope ratio ~ scale height of H.

The thickness of the hydrostatic layer (or degree of vertical convection) is one of the leading factor that determines the isotope ratio (cf. Table 1).

 \Rightarrow Isotope ratio can be dynamic and structured.

Non-thermal escape?

Evaluate the composition change by escape
⇒ Relative contribution of thermal & non-thermal escapes
(They have different mass-filtering effect)

At moment, we do not know if they are related (they might even anti-correlate to each other, but who knows?) ⇒ Need simultaneous observation

No systematic observation at the Earth

(all observations have been done instrument-level but not mission level)

Fate of ions in each route

(a) Polar outflow to solar wind: all ions escape (O⁺~10²⁵ s⁻¹)
 cf. Prognoz-7, but not enough statistics → Cluster answered.
 (Hawkeye without composition)

(b) Polar outflow to magnetotail: some escapes ($O^+ \sim 10^{24-25} \text{ s}^{-1}$) cf. Geotail, but too many assumptions \rightarrow Cluster corrected.

(c) Auroral/subauroral outflow to inner magnetosphere & plasmasphere: portion that escapes is not clear for O⁺ cf. Geosynchronous, DE-1, etc., but not enough coverage → Cluster found it could be H⁺≥10²⁷ s⁻¹ in average.

(d) Return from magnetotail: >50% escapes ($O^+ \sim 10^{24-25} \text{ s}^{-1}$) cf. simulations + many past missions \rightarrow Cluster confirmed.

Summary of amount

(a) polar outflow

		Energy	Outflow F	Rate (10 ²⁵ s ⁻¹)	Defenser
Satellite	R (Re)	Range keV	H+	O+	References
Cluster (CIS)	> 8	0.028-40		escape ~ 2	Nilsson et al. 2012 Slapak et al. 2017
Cluster (EFW)	> 10	supersonic	tail ~ 10		Engwall et al. 2009
Polar (Apogee)	8.5	0.015–33	1	1.5	Lennartsson et al. 2004
DE-1	4	0.010–17	1	0.7	Yau et al. 1986 Collin et al. 1988
Polar (Perigee)	2-2.3	0.015–33	0.3	0.3	Peterson et al. 2001
Akebono	2.3	< 0.07	2	0.2	Cully et al. 2003a
FAST	1.4	0.003–12	-	0.2	Andersson et al. 2005

(b) magnetotail (x10²⁵ s⁻¹): earthward O⁺~0.6 / tailward ~0.5 / net return ~0.1

(c) inner magnetosphere / Cluster

Instrument	phenomenon	method	escape rate (10 ²⁵ s ⁻¹)	References
WHISPER	Plume	ω_{ce}	peak H⁺ > 100	Darrouzet et al. 2009
CIS (cold)	Wind	direct	H ⁺ ~ 50	Dandouras et al. 2013
CIS (hot)	Heating	direct	H ⁺ < 0.01	Yamauchi et al. 2012

(d) returned flow: about half are lost $< 0.1 \cdot 10^{25} \text{ s}^{-1}$

key region to measure

Exosphere

lonosphere

(Ionospheric condition should influence non-thermal escape, and need to monitor even lower part simultaneously.)

Plasmasphere

(Plasmasphere could be partly filled by the exosphere directly)

Magnetosphere

(energy coming from the magnetosphere must be major external force as well as solar UV, and some outflow returns.)

Solar wind

(Essential external condition Continuously observed)

Particular interest on N⁺ and N₂⁺ skip

Good mass filtering test for non-thermal escape

(M/dM > 700 works only for cold ions, and need other method to extract mass-filtering by the non-thermal mechanism)

Behavior is different from Oxygen with similar mass $(N_2 \rightarrow N_2^+ \rightarrow N^+ \text{ whereas } O_2 \rightarrow O \rightarrow O^+ \text{ , and completely different solar/geomagnetic dependence)}$

dissociation energy for molecules:

- N₂: 945 kJ/mole (9.79 eV) ←
- O₂: 497 kJ/mole (5.15 eV) ←
- H₂: 436 kJ/mole (4.52 eV)

Ionisation energy for atmos:

- N: 1402 kJ/mole (14.53 eV)
- O: 1314 kJ/mole (13.62 eV)
- H: 1312 kJ/mole (13.60 eV)

Summary of Scientific Objective

#1: What is the quantitative state of the atmosphere at altitudes of 500-2000 km?

- Exospheric temperature and density altitude profiles as a function of different drivers (solar EUV, solar wind and geomagnetic conditions).
- Establish isotope ratios for both neutrals and ions and compare them with those found at the Earth's surface and in other solar system objects.
- Exospheric altitude profile of ion/neutral ratios and estimate ionisation/neutralisation efficiencies
- Temporal and spatial variations of the density of major exospheric species
- Correlation of such variability with upper atmosphere parameters, and with different incident energies when particle precipitation is present

Summary of Scientific Objective

#2: What are the dominant escape mechanisms, and their dependence on drivers?

- Estimate thermal escape flux for neutral and ion species for different conditions.
- Estimate the prevailing escape mechanisms and the relative importance of thermal or non-thermal escape for different driver conditions.
- Estimate the response of the ionisation and neutralisation efficiencies, isotope fractionation and the N/O ratio to different drivers.
- Estimate the degree of recirculation of plasma after it has left the ionosphere.

Summary of Scientific Objective

#3: How are fundamental physics/chemistry processes affected by the space environment?

- How are isotopes fractionated in the space environment?
- What are the ionisation/neutralising efficiencies in the space environment?

Observation strategy

#1: Density and temperature distribution of Exosphere

- Combine in-situ and line-of-sight integrated observation (particle instrument + UV imaging spectrometer)
- Measure ions and neutrals simultaneously

#2: Both thermal and non-thermal

- Elliptic orbit with high-inclination
- Return flow is also measured

#3: External/internal drivers' condition as much as possible

- Monitor ionospheric & magnetospheric conditions
- Take advantage of EISCAT_3D

Spin-off

Correction of exospheric contamination/abroption in optical (astrophysical) observation (cf. Hisaki background from 1000 km altitude is very high)

lonospheric physics (together with e.g., EISCAT_3D)

Exospheric effect on lonosphere-Plasmasphere coupling (through ionisation as well as neutralisation)

Magnetosphere-ionosphere coupling

(covering both region + N^+/O^+ difference as tracer of different start time)

Exospheric contamination (Hisaki)

An example (a 6 min cycle) of EUV (50-150 nm) observation of Jupiter by Hisaki (Yoshikawa et al., GRL, in press). Green = emission from exosphere Yellow = emission from lo plasma torus Red = Jovian aurora

exospheric contamination/ absorption

Example of geocoronal noise in an observation taken with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope (**Roesler et al. 1999, Science**). The vertical bars are in parts due to contamination by geocoronal emission, in particular the green bar shows Lyman-alpha emission from the geocorona. The disks in this figure represent images of the scientific target of these observations, i.e. the emission from Jupiter's moon lo at various FUV wavelengths.

Payload

in-situ particle	TRL	in-situ field	TRL
INMS: Cold ion & neutral mass spectrometer (M/ Δ M > 1000): U. Bern	7 - 8	SLP: Sweeping Langmuir probe: e-density, spacecraft potential: BIRA-IASB, Brussels	4 - 5
WCIMS: Cold ions & neutral f _{dist} :	7	MAG: Magnetic field: IWF, Graz	8
NASA-GSFC		Waves (5 Hz –20 kHz): ASCR,	<u>></u> 5
MIMS: Light hot ions (M < 20, < 40 keV/q): IRAP, Toulouse	5	Prague Search Coil: LPC2E, Orléans	1
NOIA: Heavy hot ions (M > 10, <	> 6	Line of eight integrated values	TDI
30 keV/q): IRF, Kiruna		Line-or-signt integrated values	
EMS: Energetic ions (20–200 keV): U. New Hampshire, USA	<u>≥</u> 6	(85 – 140 nm, 83, 58, 30 nm for H. N. O. O ⁺ . He. He ⁺): U. Tokyo	6 - 7
ESMIE: Electrons (~5 eV – 20 keV): UCL/MSSL, London, UK	<u>></u> 6	AMC: Aurora monitoring camera (670 nm and 630 nm): Tohoku U.	7 - 8
		ENAI: ENA imager (2–200 keV): INAF/IAPS, Rome	> 5

Mass coverage

(4) -

Energy and mass coverage of particle instruments

ermal esc	ape	non-ther	mal escape	return a	nd injection
1 eV	10 eV	100 eV	/ 1 keV	10 keV	100 keV
	up	to isotope	ratio		
	for	ions/neut	ral ratio with N	IIMS	
		lono/no at			
1 eV	10 eV	100 eV	1 keV	10 keV	100 keV
(a.m.)					
<u>ion)</u> 1	2	1	78	1/ 16	28.32
ц́+	Hot	Ho++	N++O++	N+ O+	No+Oo+
	I IC	H ₂ ⁺		NU	N2 02
	meets of Lit				
necnanica	mask of H				
nuired rand		bo	nus range		
	ermal esc 1 eV 1 eV ion) 1 H+ mechanical	ermal escape 1 eV 10 eV up for 1 eV 10 eV ion) 1 H 2 H+ He+ mechanical mask of H+	ermal escape 1 eV 10 eV up to isotope for ions/neutr 1 eV 10 eV 100 eV ion) 1 eV 10 eV 100 eV ion) 1 H ⁺ He ⁺ He ⁺ He ⁺ He ⁺ He ⁺ mechanical mask of H ⁺	ermal escape 1 eV 10 eV up to isotope ratio for ions/neutral ratio with N 1 eV 10 eV 100 eV 1 keV ion) 1 H+ He+ He+ N++O++ mechanical mask of H+ height angle	ermal escape non-thermal escape return a 1 eV 10 eV 1 keV 10 keV up to isotope ratio for ions/neutral ratio with NIMS 10 keV 1 eV 10 eV 100 eV 1 keV 10 keV 1 eV 10 eV 100 eV 1 keV 10 keV 1 eV 10 eV 100 eV 1 keV 10 keV 1 eV 10 eV 100 eV 1 keV 10 keV ion) 2 4 7 8 14 16 H+ He+ He+ N++O++ N+ O+ mechanical mask of H+ bonus range bonus range

Spacecraft (spin+despun) and orbit

Orbit evolution

- Initial perigee altitude : 800 km
- Apogee altitude : 33 000 km (6.2 R_E geocentric distance)
- Orbital plane inclination : 90°
- Initial latitude of the line of apsides: 85°N
- Argument of perigee: 255°
- 9 h 45 orbital period (2697 orbits in 3 years)
- No need for orbit maintenance manoeuvres (unless we want to gradually change the orbit characteristics)
- -0.21°/ day rotation of the line of apsides in this plane (230° in 3 years)
- Slow oscillation of the perigee altitude, between 800 and 480 km
- Need for deorbiting at the end of mission

Region of interest

White and green zones (> 5000 km altitude) are perfectly suited for remote sensing observations of the lower exosphere and limb.

Radiation dose

Total ionising doses after 3 years ~ 35–40 krad behind 5 mm of aluminium shielding

Accomo -dation

IMA/ICA → NOIA

Will be 4 cm longer and 6 cm wider than this, but entrance is narrower

estimated resolution

By Georgios Nicolaou

END

Science of UVIS

Density altitude profiles (+ variability) of neutrals and ions in the exosphere (O, N, N₂, H, He).

Will measure in coordination with other instruments

AI: space-proof CCD instead of commercial comp.

Visible

Search Coil (wave)

- Sensor (ELF-VLF)
 - 3 mono band ELF-VLF antennas
 - [5 Hz 20 kHz]

Col: Kanazawa U. (Yagitani)

Preamplifier

3 channels (3 ELF-VLF). Miniaturized preamplifier integrated inside the sensor's foot.

- Sensor's foot
 - orthogonal assembly of the 3 antennas
 - mechanical interface

S/C specification

orbital period	~10 hr
attitude control	Spin (22-26 sec)
attitude reference	Sun-pointing
control method	cold gas
time resolution	≤ 1 min
angular resolution	//, \perp , and anti-//
telemetry	~ 200 kbps
life time	3 year

The result depends on the **oxidation state of N** reduced form (NH_3) neutral form (N_2) oxidized form (NO_x)

Nitrogen is missing on Mars skip

Planetary formation does not easily explain it.

Condensation temperature of

 $\mathsf{T}_{\mathrm{C}}(\mathsf{N}_2) \sim \mathsf{T}_{\mathrm{C}}(\mathsf{CO}) << \mathsf{T}_{\mathrm{C}}(\mathsf{CO}_2) \sim \mathsf{T}_{\mathrm{C}}(\mathsf{NH}_3)$

indicates that condensation of N and C most likely occurred in the form of N₂–CO pair (~ 30°K) or NH₃–CO₂ pair (50 ~ 90°K). Therefore, N₂ content should be Mars > Earth > Venus.

N₂-delivery model does not easily explain it. It should deliver on Mars too

Omit

Mass and energy range

Roles of support instruments skip

Magnetometer (shortest boom will do the work) Pitch angle information and large-scale current system

Langmuir Probe (shortest boom will do the work) Spacecraft potential for accurate ion energy measurements.

Electron detector

Identifying the region in terms of plasma region Photoelectron information gives connectivity to the ionosphere

Aurora monitoring camera (baseline/optional ?)

Monitoring the ionospheric (ion source) condition

Wave package

Modes of waves associated with energization of ions

Energetic Neutral Atoms

In-situ monitoring of substorm activity

Why nitrogen? 3. Amount

(Peterson, 2002)

Omit

(Peterson et al., 2006)

Why N⁺ and N₂⁺? some puzzle skip

O/H ratio also increases

N/O ratio in anti-phase with activity

Why nitrogen? possible to det skip

Hot ion (lab calibration)

Cold ion (lab calibration)

69

UV Spectrum (Å)

Our knowledge on Earth's N⁺ behavior is poor

(a) Dependence on geomagnetic activities is **larger for N⁺ than O⁺** for both <25 eV (Yau et al., 1993) and > 30 keV (Hamilton et al., 1988).

(b) N^+/O^+ ratio varies from <0.1 (quiet time) to \approx 1 (large storm) What we call O^+ is normally a mixture of N^+ and O^+ . This also applies to O^{++} .

(c) [CNO group]⁺ at <10 keV range is **abundant in the magnetosphere**.

(d) Ionization altitude of N (eventually N_2) is likely higher than for O in the ionosphere (when O⁺ is starting to be heated, majority of N is still neutral).

(e) **N/O ratio at Mars** (and C/O ratio at Moon) **are extremely low** compared to the other planets.

(f) Molecular N_2 was detected Martian soil and comet, but the ratio was very low.

(g) Isotope ratio (e.g., ¹⁵N/¹⁴N) is different between different planets/comets.

One thing clear is that O+ behavior and N+ behavior are completely different!

Omit

baseline payload

Measurement	SI (PI institute)	Required ability to measure
light hot ions:	MIMS (IRAP)	H+, He++, He+, O++, N+, O+ (10 eV - 20 keV),
heavy hot ions:	NOID (IRF)	N+, O+, N2+ (10 eV - 20 keV/q),
cold ions:	NIMS (UBern)	H+, He++, He+, N++, O++, N+, O+, N2+, O2+ (< 10 eV),
energetic ions:	CHEMS (UNH)	H+, He++, He+, O++, N+, O+ (20-200 keV/q),
SC potential:	SLP-IS (BIRA-IASB)	1 V accuracy, every spin
UV/visible emission:	NUVO (LATMOS)	91 nm (N+), 108 nm (N+), 391 nm (N2+), 428 nm (N2+)
magnetic field:	MAG (IWF)	-5000 - +5000 nT,
electrons:	PEACE (MSSL)	10 eV - 10 keV,

optional payload

Measurement	SI (PI institute)	Required ability to measure
IR emission:		
airglow/aurora emission	CAAC (TohokuU)	two of auroral emission
cold ions and neutrals:	CINMS (NASA/ GSFC)	H+, He++, He+, N++, O++, N+, O+, N2+, O2+, N, O
wave analyser	WAVES (ASCR/IAP)	10 Hz – 1 KHz,
waves detector		together with WAVES
ENA		
Open questions on Nitrogen 1. Nitrogen form @ ancient Earth? 2. Why nitrogen @ Mars << @ Earth, Venus, Titan

rich in N

Venus

N < 0.01% of Earth/Venus

 N^+

0

Earth

Mars

Atmosphere formation models

