

ESA M5 Proposal ESCAPE European SpaceCraft for the study of Atmospheric Particle Escape

I. Dandouras (IRAP, Toulouse = Lead) <u>M. Yamauchi (IRF, Kiruna = co-Lead)</u> and **the ESCAPE Proposal Team**

THEME: How and at what rate is Earth slowly losing its atmosphere to space?

What are the dominant escape mechanisms?

What is their dependence on the solar and geomagnetic activity conditions?

ESCAPE objectives are interdisciplinary

composition over a long (geological scale) time period Earth's Atmosphere **Through Time** Escape to space Water, H₂, CO emperature Abundance Steam Atm. 0, Impacts ? 4.56 4.46 4.44 4.2 3.8 3.5 2.2 0.6 Today Time before present, billions of years

History of the Earth's atmospheric

Implications for habitability: nitrogen & oxygen are essential elements for life

Atmospheric evolution of exoplanets

Comparative planetary atmospheres evolution

Covering area of EISCAT_3D

High sensitivity in more than 500 km diameter (grey area) $\approx 15^{\circ}$ longitudinal range

₩

5 % of polar orbits traverses this region in average

╋

More conjugacies if we consider geomagnetic tracing

Some Unique Features of the ESCAPE Mission

- # 1: A quantum leap in our knowledge :
 - First time comparison of neutral/thermal escape and ion/nonthermal escape
 - First time thorough observation of the escape sources: the exosphere > 500km to give robust numbers (n, T)
 - First time thorough observations of **isotope ratios** in the geospace environment

2: Unique observational strategy:

- Unique combination of in-situ and remote sensing measurements
- Priority in high-mass resolution so that O-N separation becomes possible
- Low perigee with a wide altitude range: 500-33000 km

Some Unique Features of the ESCAPE Mission

3: Timely mission :

- European EISCAT_3D, an revolution of ground-based observation that has just started, will be matured by launch
- We do not know as much on the exosphere of Earth as we now know on planetary exospheres
- Reference data for exo-planetary / planetary atmospheres and habitability, which now receives high public interest

4: Interdisciplinary objectives :

- Basic ionization processes
- Neutral atmospheric science + space plasmas physics
- Comparative planetology
- Atmospheric evolution and habitability
- Satellite drag by atmospheric expansion during space weather events

ESCAPE Scientific Objectives

- 1. Build a quantitative and comprehensive picture for 500-2000 km altitudes
- Determine exospheric altitude density profiles and temperature profile as a function of different drivers such as solar EUV, solar wind and geomagnetic conditions.
- Establish isotope ratios for both neutrals and ions and compare them with those found at the Earth's surface and in other solar system objects.
- Determine exospheric altitude profiles of ion/neutral ratios and estimate ionisation / neutralisation efficiencies.
- Measure temporal and spatial variations of the density of major exospheric species.
- Correlate such variability with upper atmosphere parameters, and with different incident energies when particle precipitation is present.

2. Determine the dominant escape mechanisms, and their dependence on the drivers

- Estimate thermal escape flux for neutral and ion species for different conditions.
- Estimate the prevailing escape mechanisms and the relative importance of thermal or nonthermal escape for different driver conditions.
- Estimate the response of the ionisation / neutralisation efficiencies, isotope fractionation and the N/O ratio to different drivers.
- Estimate the degree of recirculation of plasma after it has left the ionosphere.