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Mission objectives

To measure non-thermal nitrogen budget and circulation
with a quality that allows extrapolating over a billion-year
timescale in the past

« “Past conditions” require a wide range of solar
EUV and solar wind (velocity, density, and
magnetic field) input conditions.

« “Good quality” requires measurements of major
volatile ratios, i.e., N/O and O/H ratios
(H and part of O comes from H,0).

Nitrogen constitutes 78% of the Earth’s atmosphere,
and is always a part of the composition of amino-acids.



What is to be measured

(1) Magnetospheric density distribution and fluxes
for N*, N,*, Of, and H™.

(2) Energy distribution of each species in the
magnetosphere.

(3) Neutral and ion densities at altitudes > 1000 km
(exosphere / upper ionosphere).

(4) Low-frequency waves that significantly control the
lon energization.

* All the above data for a wide range of solar wind
and solar EUV conditions



Why nitrogen?

Different behavior from Oxygen

Escaped amount comparable to inventory
Scientifically important (e.g., planetary evolution)
Now possible to measure (was impossible 4 year ago)

Important also for magnetospheric / ionospheric science



Why nitrogen? 1a. Behavior
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Why nitrogen? 1b. Amount

 Present nitrogen inventory = 4-5 x 1078 kg.

= Non-thermal escape matters if 2 10° kg/year
(>10%7 ionsl/s)

« Average O* escape rate is 10%2°-26 (Cluster, Polar, etc.)
* It changes by a factor of 102 during storms (Akebono)

* N/O ratio increases to 1 during storms (Akebono)

= N* escape of >10?7 ions/s is quite possible in
the past.

One may no longer ignore the non-thermal N*
escape when modeling the ancient atmosphere.



Can we cover both escape & return?
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Are 3 years sufficient?

F10.7 index .

(Proxy for solar EUV)
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Wide range of EUV intensities within 2 years
during each declining phase.

We expect the same during 2027-2028.
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Why nitrogen? 2. Importance

Estimating Chemistry of Ancient Earth
Amino acid formation depends on oxidation state of N (NH; or N, or NO,).

Mars Nitrogen Mystery
N content is Venus > Earth >> Mars (0.01% of Earth for amount and 10% for N/C).

Terrestrial Exosphere
No knowledge for nitrogen exosphere > 1000 km (and for oxygen > 1500 km).

lonosphere-Exosphere interaction
N*/N,*/O* ratio @ topside ionosphere is not well understood.

Inner Magnetosphere (ion dynamics and ionosphere-magnetosphere coupling)
N* and O* are independent tracers.
N,* is the major molecular cold ion (N,* >> NO*, O,).

Space Plasma Physics (acceleration)
Different initial velocities between M/q=14 and M/q=16 give extra information.
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Open questions on Nitrogen
1. Nitrogen form @ ancient Earth?
2. Why nitrogen @ Mars

<< @ Earth, Venus, Titan

N < 0.01% of
Earth/Venus
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NITRO’ s contribution

Through the measurement of nitrogen budget
(escape and return rate), i.e.,

(a) direct ion measurements and

(b) column density measurements of emission lines,
NITRO will provide a quantitative estimate of past total
escape.

Through the first ever detailed measurement of
exosphere at > 1000 km, i.e.,

(a) direct neutral measurements and

(b) limb observation of emission lines,
Exospheric model (which is mandatory in all atmospheric
evolution models) can be validated against data.



If the nitrogen escape is large,
#1

We can compare the two competing models more quantitatively:

N, delivery model (from comets, asteroids)

Expect neutral form with N, in primordial Earth
+ Volatiles are difficult to be included in proto-Earth (Temperature).
+ Volatiles should have escaped during the time of outgassing (EUV).
— But amount of delivery is uncertain.

‘Protection of nitrogen from outgassing NH,
Expect alkali form with NH; in primordial Earth
+ Naturally expected if the proto-Earth included nitrogen (as NH,).
+ NH, rather than N, is expected because of higher T, jcnsation-
— But difficult to protect from hydrodynamic massive escape.



If the nitrogen escape is large
#2
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If the nitroaen escape is small
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Mission Profile: Orbit

Remote sensing
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Mission Profile: Orbit Parameters

Spacecraft In-situ Remote sensing
orbit 800 km x 33000 km |500 km x 2400 km
period 589 min 115 min
inclination | = 68.5° | = 88.35°
latitudinal drift o = 2°/month o = 75°/month
longitudinal drift () = 53°/year () = 53°/year”

required shielding |5.3 mm aluminum 4.5 mm aluminum
for < 50 krad/3 yr

ground contact 8 hour / 49 hours 100 min / day

o (V) atapogee |0.15°/min 2.47°/min

* Accuracy of injection: Ai=+£0.15° (AQ<+5°/year)
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Mission Profile: Payload

In-situ (baseline/optional) Remote sensing (baseline/optional)
* Cold ion mass spectrometer (Bern) * Optical emissions (LATMOS)
* lon mass analyzers (0.03 — 30 keV): (1) N+i_91 nm, 108 nm

(1) m/q < 20 (Toulouse) (2) Ni : 391 nm, 428 nm

(2) m/q > 10 (Kiruna) (3) O*: 83 nm

* Cold ion/neutral mass spectrometer
(Goddard)

* lon analyzer (< 0.1 keV) (Kiruna)
* Auroral / airglow camera (Tohoku)
* Langmuir Probe (Brussels)

* Energetic lon mass analyzer (UNH)
* Magnetometer (Graz)

* Langmuir probe (Brussels)

* Waves analyser (Prague)

* Search coil (Qy) (Orleans) * Magnetometer (Graz)

* Electron analyzer (London) * Electron analyzer (London)
* Radiation belts virtual detector (Athens) « Waves analyser (Prague)

* ENA monitoring (Berkeley) * Search Coil (Qy) (Orleans)
* (Potential Control=SC subsystem) * lon analyzer (< 50 keV) (ISAS)
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NITRO lon and Neutral Mass Spectrometers

In-situ measurements satellite
Orbit: 800 km x 6 Rg, i ~69°, Spin~24 s

C-foil TOF
15-40
keV

CHEMS
(UNH)

~20 keV -
250 keV

MCP TOF 10 |
NOID (Kiruna) f| 1ey. | ™AmM~10

10 eV - 20 keV 20 keV
m/Am>8 |
\J’f m/Am

~15-18

NIMS (University of Bern)
~1eV,m/Am ~ 1100

« Remote-sensing »
Satellite
Orbit: polar
at ~500 x 2400 km
3 axes stabilised

Energy

CINMS (GSFC, NASA)
0-50eV
m /Am > 60
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accommodation and FOV (in-situ SC)

Sun

In-situ SC = 1.5~2 m diameter {}
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Remote sensing SC

solar panel tilts 0°-90°
y on 0°-360° turn table

Remote sensing Z-nadi
spacecraft NOID
I
X=mainly ram
NUVO
o]

(looking at zeneath) -
g X=mainly ram . __ neutral

\‘b( Z‘”j‘dLT Cl M cold)
CINMS (cold)
NUVO has clear field-of- — -
view even with optional NUVO (camera)
instruments. B
NOID NOID (hot ion) Vivisible)

Propultion system Propultion system
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In-situ #1 SC = 1.5~2 m diameter Sun

i i solar panel
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Mission Profile: Visibility

Visibility between both SC (invariant lat >160°l and > 1800 km)
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Measurements resolution of NUVO

,/" Apogee angular velocity: \\\
// In-situ: 1.77 km/s = 0.15°/min .
/ Remote sensing: 6.32 km/s =2.47°/min
VS \
& 7 R \

/ N
Vi J/ R A
% \

NUVO resolution: 0.1°/pixel,
x 20 pixels along 2°-Iong slit

7700 km

I
]
1° (scanner resolution) 4
1

o

A~6 min disbé'nce

« With good altitude resolution
* With good spatial-temporal separation
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For one-spacecraft option

0T T—
-~ NUVO fisld-of-view slices s
V~7 katls in the YZ plane LY

I/ \\\

I, \
! Ah=5 km/s x 24 s/spin \
|
! Earth ~120km (NUVO) ‘
i‘V=9~1 0 km/s V~1.8 km/s}
\ I
\ . . I
\ NUVO resolution: 0.1°/pixel,/

\

\
Vps5.5 km/s
Ah=5.5 kmYs.x 24 s/s]
~130km (in-sitd¥~-.

x 20 pixels along 2°/ong slit

Altitude resolution is similar
* Nearly no latitude resolution
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One vs. Two spacecraft

Measurements

two spacecraft

one spacecraft

exospheric neutral

by remote-sensing (CINMS)

by in-situ (NIMS or CINMS)

imaging exosphere

by remote-sensing (NUVO)

by in-situ (NUVO)

inclination 68.5° (in-situ) and ~80° (in-situ)
88.35° (remote sensing)
Science two spacecraft one spacecraft

Total escape/loss

yes

yes

Exosphere altitude distribution: yes altitude distribution: yes
latitude distribution: yes latitude distribution: no

lonosphere latitude distribution: yes latitude distribution: no
N* production: yes N* production: yes

Temporal-spatial yes no

M-I coupling yes (detailed) yes (limited)

Acceleration yes (detailed) yes (limited)
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Science with optional payload

These optional payloads and subsystems just take
advantage of the unique configuration of the mission.

Energetic Neutral Atom (ENA) detector for in-situ spacecraft
Monitoring substorm-related ENAs, from the tail.

Precipitating ions for remote-sensing spacecraft
To monitor the return flux of accelerated ions.

Electron and magnetometer for remote-sensing spacecraft
Total energy input to the ionosphere (which is available for outflow energy).

Wave package for remote-sensing spacecraft

Low-frequency waves that are associated with energization of ionospheric ions.

Long booms

4-5 m: Total density (by whistler waves) + average mass (field-line resonance
frequency): are good to compare with the line-of-sight observations.

50 m (one-SC option): Stick always outside the satellite sheath
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Summary

With a unique orbital configuration and recently developed
reliable instrumentation, NITRO will reveal the present-day’s
nitrogen dynamics and budget.

This knowledge is mandatory in understanding the evolution of
"planet Earth" :

- In estimating the ancient Earth's nitrogen condition;

- in understanding the *N/™N part of Mars nitrogen mystery;
- In making a reliable model for the ancient exosphere.

The required instrumentation can also answer key questions
- on Magnetospheric and lonospheric dynamics; and
- on basic Space Plasma Physics.



Thank you for your attention



Roles of supporting instruments

Magnetometer (shortest boom will do the work)
Pitch angle information and ultra-low frequency wave detection.

Langmuir Probe (shortest boom will do the work)
Spacecraft potential for accurate ion energy measurements.

Electron detector
|ldentifying the region in terms of plasma region.
Photoelectron information gives connectivity to the ionosphere.

Wave package
Need to know what modes of waves are associated with energization of ions.

Auroral / airglow camera
Auroral (ion source) condition should be monitored. Context information.

Radiation warning
Adjust operation mode of ion detectors, to keep them safe.

Monitor radiation belt dynamics. ?77?



Why nitrogen? 1. Amount

> 10 keV (Peterson et al., 2002)
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Why nitrogen? 1c. Not well known

WIND/PHA observations at 8-38 RE (10-210 keV) AMPTE result
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Nitrogen is an essential element for life

H

4+
Ele;ctrodes
H
Electrical spark g
R (Lightning)
H,0, CH,, NH,, z j:lj—)t]

HZCO /

ga es (primitive atmosphere)

Condenser

\ Direction of water vapor circulation
<
Q
c
C
<
T
c
T

Could waler g

Miller’s experiment (Miller and Urey, 1959). R //
Pre-biotic type atmosphere + discharges. . . w f K\\‘/ —
= formation of amino-acids ! fronanng prenictompens

The result depends on the oxydation state of N
reduced form (NH,)
neutral form (N,)
oxidized form (NO,)
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Earth’s Atmosphere
Through Time
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Escape to space
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Nitrogen is missing on Mars

Jeans escape does not explain it. Planetary formation does not

Tt explain it.
200 L ¢ zamm Condensation temperature of
Nepuune o To(N,) ~ To(CO) << To(CO,) ~ To(NH,)
100l ® ® indicates that condensation of N
[ Uranus and C most likely occurred in the
He /)
Q) ey, form of N,—~CO pair (~ 30°K) or
€0l Ry, NH,—CO, pair (50 ~ 90°K).
> | ~_HO g Therefore, N, content should be
[ ® L e Mars > Earth > Venus.
2 10|90/, y g~ Earth Yy
% >\ ]\,'_[:rs Triton ]
2 4L e .0 N,-Delivery model does
e not explain it.
T;{ﬁ‘\ It should deliver on Mars too
ol @® Moon :
I | | | |

1000 400 200 100 40 2?27
Surface temperature (K)



If the nitrogen escape is large
#2

Interpretation of isotope ratio 1°N/1“N will be questioned
because total nitrogen escape is comparable between the
Earth and Mars

=> (a) Substantial Martian atmosphere could have been
delivered by comet?

(b) Simple difference in the escape mechanism?

or (c) No outgassing happened, or all outgassed air has been
lost at Early stage?

2?77



Atmosphere formation models

H20, H, CO2

Metals  gijjicates + volatiles

H20, carbon (< 30 wt%)

+ &)

Water

Differentiation

Primitive material
with low or high water

content N _
Silicates + volatiles

H20, carbon (< 3 wt%)
Accretion and silicate

magma ocean solidification

Water
Differentiated

material mixed with
low or high water content

Metallic or no
metallic core

Secondary atmosphere formation due to degassing from
subsequent tectonic activity

atmosphere
Very dry or dry
silicate mantle

No iccore
due to complete
Fe oxidation

H20,

H, CO2 atmosphere

ate mantle

h traces or
ge amounts
of volatiles

core

Less dense H20, H, CO2

atmosphere

jcate mantle
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2 Volatile condensation
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T,K
Condensation temperature T is

Tc(Np) ~< T(CO) ~< T(CH,) << Tc(COy) ~< T(NH,)
N/C ratio slowly in creases with Sun distance. -




Rock-forming elements
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Was atmosphere alkali / acidic?

* One method is delivery model (neutral) versus protection
model (alkali).

* Also, the more the total nitrogen escape, the more NH;
was needed as the mother form of N, (NH; should decay
with time to NH;). Here all O, can be assumed to have

been CO, form.




Total radiation dose befind Aluminum shielding
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Mass coverage
(1) Mass range

light M/q 1 2 4 7 8 14 16 28 32

ions H+ Het Het+ N++ O++ N+ Ot Ny*+ Op*

heavy

(2) Energy range
in situ SC (ion)
cold

E/q 1eV 10 eV 100 eV 1 keV 10 keV 100 keV
hot @ 0 i e—————————————————————————— . 3 4

energetic

remote sensing SC (ion)
cold

E/g 1eV 10 eV 100 eV 1 keV 10 keV 100 keV
hotoutflow —mmmme———,eeeeeeeeee

hot precipitation e —e

electron/ENA

ele¢tron - —-—_—mAo ™™™
E/q leV 10 eV 100 eV 1 keV 10 keV

neutralatoms =00 e—




In-situ payload

Measurement | SI (Pl institute) Required ability to measure
light hot ions: MIMS (IRAP) H+, He++, He+, O++, N+, O+ (10 eV - 20 keV)
heavy hot ions: | NOID (IRF) N+, O+, N2+ (10 eV - 20 keV/q)

cold ions:

NIMS (UBern)

H+, He++, He+, N++, O++, N+, O+, N2+, 02+ (<10 eV)

energetic ions:

CHEMS (UNH)

H+, He++, He+, O++, N+, O+ (20-200 keV/q)

SC potential:

SLP-IS (BIRA-IASB)

1V accuracy, every spin

magnetic field:

MAG (IWF)

-5000 - +5000 nT

wave analyser

WAVES (ASCR/IAP)

10 Hz -1 KHz

waves detector

SCM (LPC2E)

together with WAVES

electrons:

PEACE (MSSL)

10 eV - 10 keV

ENA

STEIN (UCB/SSL)

4 - 20 keV




Remote sensing payload

Measurement SI (Pl institute) Required ability to measure

UV/visible emission: NUVO (LATMOS) 91 nm (N+), 108 nm (N+), 391 nm
(N2+), 428 nm (N2+)

cold ions and neutrals: CINMS (NASA/ GSFC) H+, He++, He+, N++, O++, N+, O+, N2+,
02+ N, O

airglow/aurora emission | CAAC (TohokuU) two of auroral emission

outflowing ions: NOID-RS (= in-situ) N+, O+ (1 - 100 eV)

SC potential: SLP-RS (= in-situ) same as in-situ

(precipitating ions) MSA (ISAS) N+, O+ (100 eV - 30 keV)

(magnetic field) MAG (= in-situ) same as in-situ

(wave analyser) WAVES (=s in-situ) same as in-situ

(wave detector) SCM (= in-situ) same as in-situ
(electrons) PEACE (= in-situ) same as in-situ -




Mission Profile: Spacecraft

Spacecraft In-situ Remote sensing
attitude control Spin (T=22-26 sec) 3-axis
attitude reference | Sun-pointing facing to Nadir
control method cold gas momentum wheel
time resolution < 2 min < 2 min (remote)

< 1 min (local)
angular resolution |//, 1, and anti-// no (plasma), 2° (optical)
telemetry ~ 80 kbps / 13-m dish ~ 350 kbps / 15-m dish
life time 3 year 3 year
boom 4 (1+2)
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- Life evolution problem (e.g., why life was formed only
once after the present from of RNA is established?)

- What was the atmospheric composition before the
photosynthesis started?

- What was the atmospheric composition at the time
when the amino acid was formed (but long after the
atmosphere was established)?




Mission objective

Earth evolution / origin of life: Amino acid formation depends on
oxidation state of N (NH; or N, or NO,) and the relative abundance of
N, O, & H near surface. Current measurements can be used to
determine how the atmosphere evolved on geological time scales.

Planetary atmosphere: N on Mars is only 0.01% of Earth ~ Venus ~ Titan). To
understand the abundances on other planets, we first have to understand
the Earth case.

Magnetosphere: cold N*/O* escape correlates with F10.7 & Kp. With similar M/q,
but with different ionospheric scale heights, they are good tracers to understand
ion outflow dynamics and circulation.

Exosphere and lonosphere: Our knowledge of exosphere > 1000km is very poor,
and variability of ionospheric N*/O™ ratio is poorly understood.

Space Plasma Physics: Different V, between M/q=14 and M/g=16 gives extra

information on plasma energization mechanisms. -




Our knowledge on Earth’ s N* behavior is poor

(a) Dependence on geomagnetic activities is larger for N* than O* for both <25 eV
(Yau et al., 1993) and > 30 keV (Hamilton et al., 1988).

(b) N*/O* ratio varies from <0.1 (quiet time) to = 1 (large storm). What we call O* is
normally a mixture of N* and O*. This also applies to O**.

(c) [CNO group]* at <10 keV range is abundant in the magnetosphere.

(d) lonization altitude of N (eventually N,) is likely higher than for O in the ionosphere
(when O* is starting to be heated, majority of N is still neutral).

(e) N/O ratio at Mars (and C/O ratio at Moon) are extremely low compared to the
other planets.

(f) Molecular N, was detected Martian soil and comet, but the ratio was very low.

(g) Isotope ratio (e.g., 1°N/'*N) is different between different planets/comets.

One thing clear is that O+ behavior and N+

behavior are completely different! -




Multi-disciplinary importance of N* and N,*

Estimating Chemistry of Ancient Earth (Earth Evolution & Origin of Life)
Amino acid formation depends on oxidation state of N (NH; or N, or NO,) = relative
abundance of N, O, & H near surface.

Mars Nitrogen Mystery (Planetary Evolution)

N is missing on Mars (0.01% of Earth ~ Venus ~ Titan). This could be even be the reason why
we could not find life on Mars.

Terrestrial Exosphere

no past measurement of terrestrial exosphere > 1500 km, and no knowledge for nitrogen
exosphere > 1000 km.

lonosphere-Exosphere interaction
N*/N,*/O*/O** ratio @ topside ionosphere depends on solar activity, but mechanism is unclear.

Inner Magnetosphere (ion dynamics and ionosphere-magnetosphere coupling)
N*/O* changes with EUV & Geomagnetic activities (Akebono cold ion observations).
N,* is the major molecular cold ion (N,* >> NO*, O,*).

Space Plasma Physics (acceleration)
Different V, between M/q=14 and M/g=16 gives extra information.

But, no observation of N*/O* ratio or N,*/NO*/O* ratio at 0.03-30
keV range in space near Mars/Venus/Earth. 56




Can we estimate return?
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Summary of requirement for ion instruments

Energy range: From cold (< 1 eV) up to energetic (> 100 keV) for in-situ spacecraft
and from cold to about 100 eV for the remote sensing spacecraft. Since the
detection method is different between different energies (cold < 20 eV, hot = 10 eV
— 10 keV, and energetic > 30 keV), we need at least three ion instruments for in-
situ spacecraft and two ion instruments for the remote sensing spacecraft.

Energy resolution for hot ions: Must be able to see the energy difference between N*
and O* (12% difference if the velocity is the same) for 10 eV - 1 keV ions (majority
of heavy ions) to guess the energization mechanism. This means 2 steps for 12%
increases, i.e., 6% stepping with energy band of AE/E=6% (40 steps for a factor 10
increase) for both spacecraft. A sparse resolution is ok for energetic ions.

Mass to separate: H*, He*, N*, O*, N,*, whereas we do not need to measure N**,0*",
O,* because of O," << N,* and N**/O** = N*/O* from the cold ion data and
ionospheric model. The toughest is N* and O* (M/AM>8). For cold ions (that
constitutes majority of the density), we further require N*/O* ratio detection
accuracy of 10% in both spacecraft, and therefore need 3-4 mass channels from
My to Mg (M/AM > 30). Since hot ion instrument cannot cover both high mass and
low mass with sufficient G-factor and M/AM, we need two instruments fOigiiagi
spacecraft. For the remote sensing spacecraft we need to monitor only-

outflow, i.e., N*, O*, N,*




Summary of requirement for ion instruments

G-factor and dynamic range: For cold ions, we would 0.1/cc accuracy up to 1000/cc
(minimum 0.5/cc accuracy). G-factor for hot N* should be the same as for hot O*,
i.e., G>10* cm? str keV/keV without efficiency. Dynamic range of N+ should be
>1000. This applies both spacecraft. Time resolution: For in-situ spacecraft At =
2-3 min is sufficient, i.e., we can integrate over several spins (spin is about 20-30
sec). For the remote sensing spacecraft, we need better resolution (At = 20-30
sec) because spacecraft traverses over many latitude relatively quickly (0.05-0.1°/
sec).

Angular coverage and resolution for hot ions: For the in-situ spacecraft, we need //
direction, oblique direction and L direction to the geomagnetic filed. Converting to
all directions of the magnetic field, we need about 22.5 x 45° resolution. For the
remote sensing spacecraft, we monitor outflowing heavy ions, and single pixel that
contains the geomagnetic nadir is the minimum requirement. Since the inclination
is nearly 90° and spacecraft faces ram and nadir direction, geomagnetic nadir
oscillate to the left and right against the ram direction about 10°, whereas there are
more than 10 traversals every day. This means that relatively narrow and long FOV
(e.g., 10° x 60°) is the minimum requirement while wider FOV (e.g., 30° x 60°) is
ideal.




Validate exospheric models

Reliable exospheric model is mandatory in estimating escape

* By combining the first ever detailed measurements of exosphere
using both emissions and direct neutral measurements, the
exospheric model of N2-O2 dominant unique atmosphere becomes
reliable. Such models are basis for all types of escape including
neutral forms in the past. Ancient atmospheric escape is not the

exception.




Requirement: in-situ spacecraft

Parameter Cold Ions Hot Light Ions Hot Heavy Ions Energetic
Performance
Energy range 0—10eV 10 eV — 10 keV 10 eV — 10 keV 30 — 300 keV
dE/E no need 6% 6% sparse
Mass range 1 — 40 amu/q 1 — 20 amu/q 10 — 40 amu/q 1 — 20 amu/q
Species HZ O",N,0", |H,O0",N,0" | N,O,N, H', N", O

N,
Angular no need 22.5°x 45° 22.5°x 45° 90° x 90°
resolution (//, oblique, perp) | (//, oblique, perp) | (//, perp)
Coverage 4p1 4p1 4p1 4p1
Time resolution | 2min 2min 2min 2min
GF can measure 0.1- | 10 cm” sr 10 cm?” sr 2?77

1000 /cc eV/eV w/o eV/eV w/o

efficiency efficiency

Resources
Mass without Not constrained Not constrained Not constrained Not constrained
shielding (reasonable) (reasonable) (reasonable) (reasonable)
Power Not constrained Not constrained Not constrained Not constrained

(reasonable) (reasonable) (reasonable) (rea
Radiation dose 50 krad / 3 year 50 krad / 3 year 50 krad / 3 year 50




Requirement: remote sensing spacecraft

Parameter Cold Ions Outflow Ions Precipitating Ions
Performance
Energy range 0—10eV 1 —100 eV 100 eV — 30 keV
dE/E no need 6% 12%
Mass range 1 — 40 amu/q 10 — 40 amu/q 10 — 40 amu/q
Species H,0",N,0", [N,0",N, N, O, N,"

N,"
Angular no need 1 pixel 1 pixel
resolution
Coverage 4pi 60° x 8°, magn. 2pi zenith

Nadir covered

Time resolution | 30s 30s 30s
GF can measure 1- 10 cm” sreV/eV | 222

10000 /cc w/o efficiency
Resources
Mass without Not constrained Not constrained Not constrained
shielding (reasonable) (reasonable) (reasonable)
Power Not constrained Not constrained Not constrained

(reasonable) (reasonable) (reasonable)
Radiation dose 50 krad / 3 year 50 krad / 3 year 50 krad / 3 year




