Satellite mission ideas using EISCAT_3D

M. Yamauchi IRF, Kiruna

I3sat (Ionospheric 3D observation satellite) **for Swedish InnoSat**

Low-altitude formation flight for Japanese M3/M4

ESCAPE (European SpaceCraft for the study of Atmospheric Particle Escape) **for ESA M5**

EISCAT_3D is an important part

3D volume observation instead of scanning specific direction

₩

High sensitivity region covers more than 300 km diameter (white area) $\approx 10^{\circ}$ longitudinal range.

↓

3% of polar orbits traverses this region in average.

Swedish InnoSat + ESA M-class

InnoSat: series of small satellites every < 3 year, and launch in 4 years from proposal deadline ex., Innosat-2: 15 kg payload @ 500-650 km 2016-6-30: deadline ⇒ launch Oct. 2020 Innosat-3: 2023 = I3Sat: calibration of EISCAT_3D? Innosal-4: 2025-2026 = part of Japanese formation flight FF-MIT?

ESA M-class: series of science mission (~ 550 MEur) every 3 year, and launch 13 years after proposal deadline M5 (launch 2029-2030) ⇒ ESCAPE uses EISCAT_3D (one of 12 candidate).

FF-MIT & I3aat

FF-MIT (integrated version of I3sat):

- small-scale plasma phenomena in the magnetosphere-ionosphere-thermosphere
 ⇒ a central to the purpose of ALIS_4D and EISCAT_3D.
- minimum spacecraft distance + high time resolution ion/electron (< 20 ms/2 π)
 - \Rightarrow 150 m resolution ~ spatial resolution of ALIS_4D and EISCAT_3D.
 - ⇒ resolving the wave-particle interaction such as kinetic Alfvén.
- FF-MIT would be the first mission under discussion that takes full advantage of the capability of ALIS_4D and EISCAT_3D,
 - ⇒ worth to reinforce the mission by adding a Swedish InnoSat (budget-shielding ~ 100 MEUR, Japanese can provide only 2-3 spacecraft)
- pre-phaseA study (equivalent to ESA's PhaseB1) during 2018-2020

InnoSat part payloads candidates

- ion instrument (IRF or SSL)
- neutral instrument (IRF or SSL)
- Langmuir probe (IRF)
- electric field antenna (KTH)
- magnetometer (KTH)

InnoSat : spec

attitude 3-axis stabilized

orbit altitude < 500-650 km constant local time depends on piggy-back opportunity

payload size < 53 cm x 65 cm x 48 cm weight < 15kg power < 25-100 W depending on orbit downlink < 2.3 Mbps

InnoSat : platform

53 cm x 65 cm x 48 cm, < 15kg payload

The lonospheric-3D observation Satellite (I3Sat)

Science Theme

* How does the ionosphere and upper atmosphere respond to particle injections from the space: from electrons to cosmic dusts.

Technology Theme

* Initial test for EISCAT_3D radar system (10000 dipole antenna array) toward full operation and correct interpretation.

Critical collaboration:

- * EISCAT_3D
- commission phase is planned 2020
- full operation phase is planned 2023

Two options for payload

2023 launch option:

(a) "STEIN" keV particle, the same as above.

(b) modified "IMA"-type ion mass analyser with higher mass resolution (IRF, Kiruna)

(c) Astrid-2-type electron spectrometer (IRF, Kiruna, or any foreign instrument)

(d) Astrid-2-type Langmuir probe with 1.1 m rigid booms (either Uppsala or foreign)

2026 launch option as a part of Japanese formation flight :

(a) Modified ion mass or lowest energy ENA analyser (IRF, Kiruna)

- (b) Electric field (KTH and Uppsala)
- (c) Japanese instruments
- (d) European instruments

Limitation of satellite conjugate studies at present

Altitude-range problem

Difficult to make comparison > 500 km except parameters that can be mapped along geomagentic field.

Volume monitoring problem

The traditional ground-based measurement including current EISCAT radars cannot scan as quick as the satellite traverses over the region (point conjugacy instead of line conjugacy along the spacecraft traversal.

Scale size problem

Satellite measurements of the horizontal variation are not easily confirmed as quasi-stationary from the ground-based measurement for horizontal scale less than 10 km. Furthermore, the satellite does not cover the same longitude over two consecutive.

Combination of EISCAT_3D and low-Earth satellite at 500 km altitude

Velocity 300 km 300 200 3 E. -100 -200 100 100 200

EISCAT_3D's ability to resolve < 10 km is equivalent to < 1.5 sec satellite traversal time.

Therefore, s small low-Earth satellites with very simplified instrumentation can contribute understanding unsolved meso-/ small-scale sciences.

Accommodation for "single" option

For option together with Japanese formation flight, InnoSat needs nextgeneration technology with propulsion and radiation belt protection (for > 800 km)

I3sat : What is to be measured

#1: How does EISCAT_3D recognize the small-scale structures (that is seen in the satellite observation) at 500 km altitude?

#2: In what 3D ionospheric condition, what-types of small scale structures appears (detectable satellite)?

#3: How does the ionosphere respond to energetic (>10 keV) ions, electrons, and neutrals, respectively?

#4: EISCAT observation of artificial meteor or barium (released by satellite)

(vers. 2016-5-18)

----- continued traditional task -----

#5: Can we extract temporal change by low-altitude satellite?

I3sat : action items

- Do we have more science case with detailed examples?
- What is the realistic EISCAT_3D ability during 2021-2022?

 Are there any instrument provider?
 (Both IRF-Kiruna and IRF-Uppsala are fully occupied by JUICE and cannot provide any.)

 Is the set A (cold ion, electron, LP) sufficient or should we have different set?

• Where can we buy the instrument within budget?