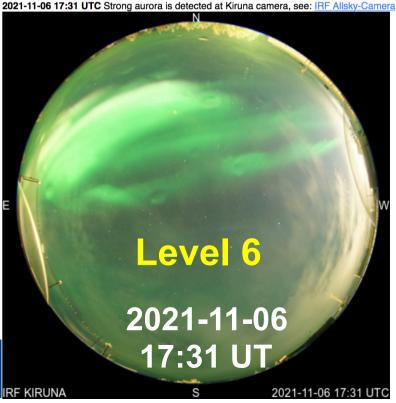
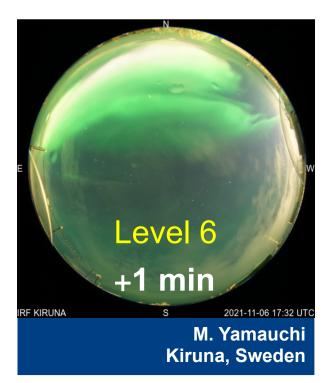

# **Auroral Alert in Operation (ver 1.0)**


A real-time judging of BIG aurora in all sky camera


M.Yamauchi (Yama) and KAGO members Swedish Institute of Space Physics (IRF), Kiruna

www (www@irf.se) <aurora-alerts@irf.se>
To: aurora-alerts@irf.se
Reply-To: www@irf.se

Strong aurora is detected at Kiruna camera







# Why Auroral Alert?

Visitors to Kiruna during September-March would like to see aurora.

Yes, can expect aurora every night. But it is easy to miss "BIG" aurora because

- (1) Big one appears only 5-10 minutes after long "boring" weak aurora.
- (2) The timing is unpredictable for this 5-10 minutes.
- (3) It is too cold to wait outside.
- (4) Even monitoring the nowcast (inside the room) make you bored, and easy to miss the important moment.

⇒ As the host and specialist of aurora, we dreamed an automatic alert system of "BIG" aurora, not the boring weak ones.

(Machine-leaning auroral classification? ⇒ No system has classified such "BIG event".)

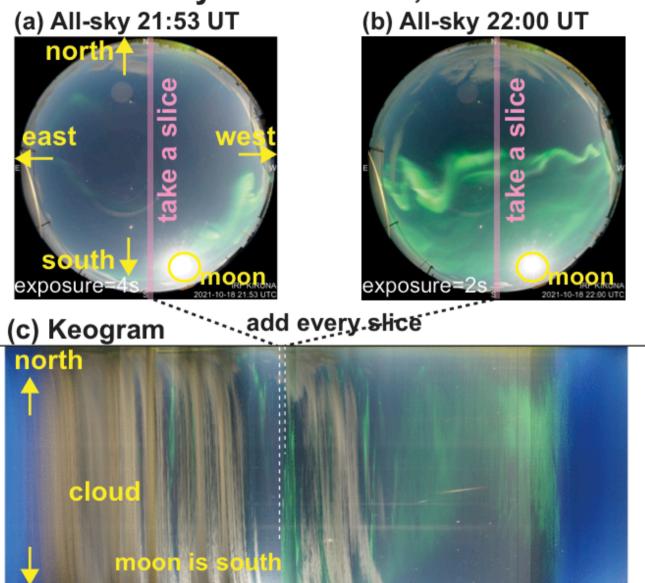


# Source Data = IRF all-sky camera (ASC)

Sony α7s with a Nikon Nikkor 8 mm 1:2.8 objective lens



Inside a 30 cm heated dome at the roof of IRF optical laboratory.


Controlled by a Raspberry Pi 4 computer

Data is stored on a large disk-server and made available in real time at <a href="https://www.irf.se/sv/observatorieverksamhet/firmamentkamera/">https://www.irf.se/sv/observatorieverksamhet/firmamentkamera/</a>



# Data output from ASC + Keogram

Kiruna all-sky camera data, October 2021





south

18

20

18 October

22

Ó

16

6

## Two-step calculation to define activity level

1. Convert image (255x255x255 colors x 1 million pixels information) into simple set of numbers = ASC auroral index.

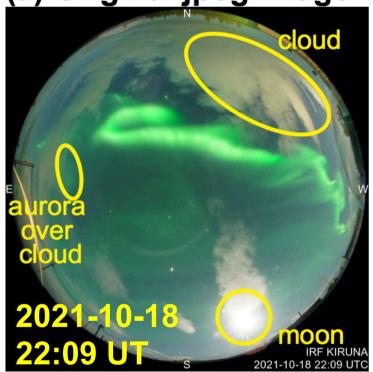
Like calculating moment (n, v, p) from spectrogram (actually, its jpg image)

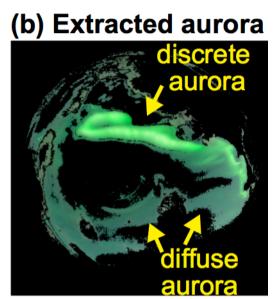
- solid calculation
- no Al

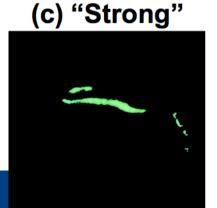
2. Use this index to define the level of aurora.

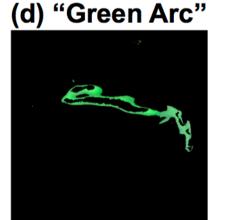
Define event/region from moment value only

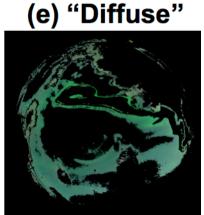
- solid criterion
- Al (neural network) is allowed





# Two-step calculation to define activity level

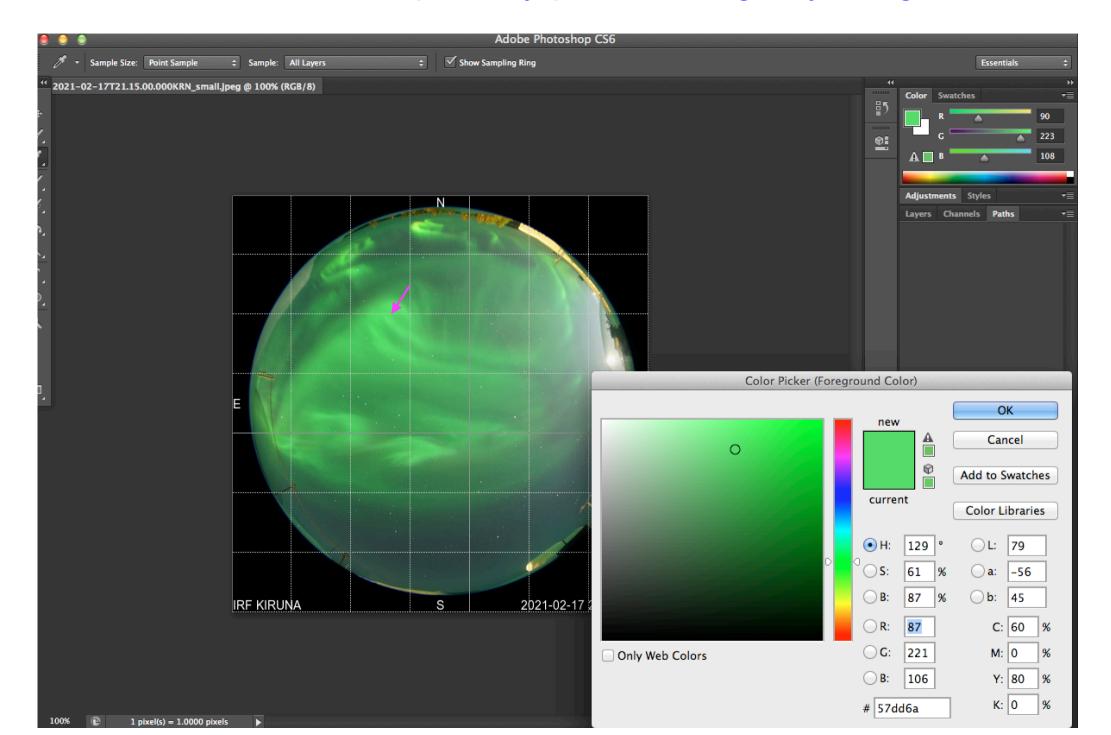

1. First convert each image (1 million pixels) into a simple set of numbers.


1a. Classify each pixel into "strong", "green arc", "diffuse", cloud, artificial light, and moon. We use "expert system" on the color (RGB values) each pixel

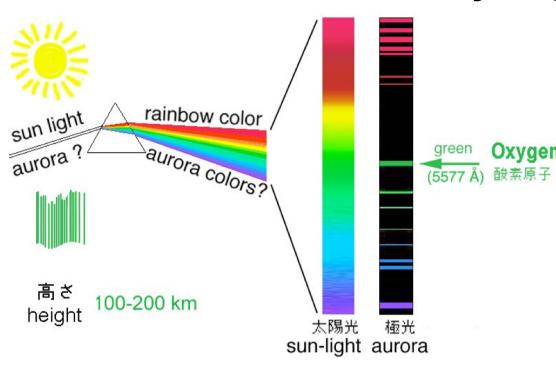

(a) Original jpeg image



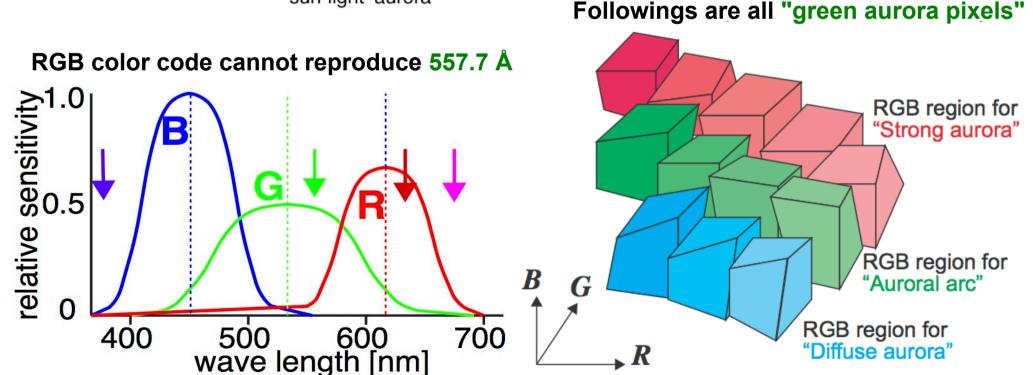










## First, examine pixel by pixel & image by image



### The reality of green color



Almost all monitoring (nowcasting) camera uses RGB system, which (1) does not re-produce "real" 557.7 Å, and (2) mixes different green-color source, ending up large deviation from 557.7 Å



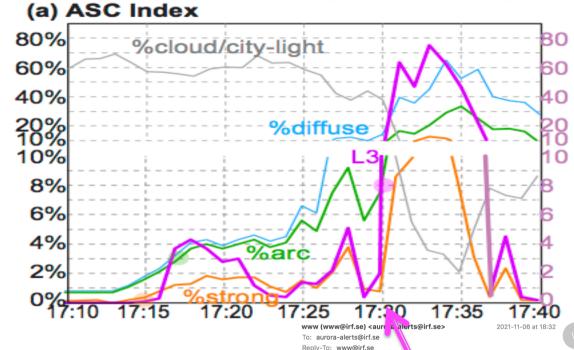
## Appendix-2: pixel data (eye-identified)

|          | J269        | ÷          | 8   | O (0   | fx    |       |   |      |      |         |   |        |     |   |        |      |       |      |       |                      |     |   |
|----------|-------------|------------|-----|--------|-------|-------|---|------|------|---------|---|--------|-----|---|--------|------|-------|------|-------|----------------------|-----|---|
| 4        | Α           | В          | С   | D      | Е     | F     | G | Н    | 1    | J       | K | L      | M   | N | 0      | P    | Q     | R    | S     | Т                    | U   | V |
| 45       |             |            |     |        |       |       |   |      |      |         |   |        |     |   |        |      |       |      |       |                      |     |   |
| 46       | saturate=sa | afe (2021) | ):  |        |       |       |   |      |      |         |   |        |     |   |        |      |       |      |       |                      |     |   |
| 247      | 241         | 255        | 230 | 94.51  | 90.2  | 184.7 |   | 94°  | 26.1 | 100.00% |   | maskN_ | 995 |   | f1ffe6 | 94.5 | 100.0 | 90.2 | 284.7 | pink                 | 94  |   |
| 248      | 239         | 255        | 229 | 93.73  | 89.8  | 183.5 |   | 97°  | 26.9 | 100.00% |   | maskN  | 995 |   | efffe5 | 93.7 | 100.0 | 89.8 | 283.5 | pink                 | 97  |   |
| 249      | 217         | 255        | 206 | 85.1   | 80.78 | 165.9 |   | 107° | 29.7 | 100.00% |   | maskN  | 995 |   | d9ffce | 85.1 | 100.0 | 80.8 | 265.9 | ?                    | 107 |   |
| 250      | 213         | 255        | 174 | 83.53  | 68.24 | 151.8 |   | 91°  | 25.3 | 100.00% |   | maskN_ | 995 |   | d5ffae | 83.5 | 100.0 | 68.2 | 251.8 | pink                 | 91  |   |
| 251      | 212         | 255        | 201 | 83.14  | 78.82 | 162   |   | 108° | 30.0 | 100.00% |   | maskN_ | 995 |   | d4ffc9 | 83.1 | 100.0 | 78.8 | 262.0 | pink                 | 108 |   |
| 252      | 211         | 255        | 173 | 82.75  | 67.84 | 150.6 |   | 92°  | 25.6 | 100.00% |   | maskN_ | 995 |   | d3ffad | 82.7 | 100.0 | 67.8 | 250.6 | ?                    | 92  |   |
| 253      | 209         | 255        | 197 | 81.96  | 77.25 | 159.2 |   | 107° | 29.7 | 100.00% |   | maskN_ | 995 |   | d1fec5 | 82.0 | 100.0 | 77.3 | 259.2 | pink                 | 107 |   |
| 254      | 204         | 255        | 194 | 80     | 76.08 | 156.1 |   | 110° | 30.6 | 100.00% |   | maskN_ | 995 |   | ccffc2 | 80.0 | 100.0 | 76.1 | 256.1 | pink                 | 110 |   |
| 255      | 200         | 255        | 190 | 78.43  | 74.51 | 152.9 |   | 111° | 30.8 | 100.00% |   | maskN_ | 995 |   | c8ffbe | 78.4 | 100.0 | 74.5 | 252.9 | pink                 | 111 |   |
| 256      | 193         | 255        | 182 | 75.69  | 71.37 | 147.1 |   | 111° | 30.8 | 100.00% |   | maskN_ | 995 |   | bafeb3 | 75.7 | 100.0 | 71.4 | 247.1 | pink                 | 111 |   |
| 257      | 191         | 255        | 179 | 74.9   | 70.2  | 145.1 |   | 111° | 30.8 | 100.00% |   | maskN  |     |   | bfffb3 | 74.9 | 100.0 | 70.2 | 245.1 | pink                 | 111 |   |
| 258      | 180         | 255        | 173 | 70.59  | 67.84 | 138.4 |   | 115° | 31.9 | 100.00% |   | maskN  | 995 |   | b4ffad | 70.6 | 100.0 | 67.8 | 238.4 | pink                 | 115 |   |
| 259      | 176         | 255        | 167 | 69.02  | 65.49 | 134.5 |   | 114° | 31.7 | 100.00% |   | maskN  | 995 |   | c3fda6 | 69.0 | 100.0 | 65.5 | 234.5 | pink                 | 114 |   |
| 260      | 176         | 255        | 148 | 69.02  | 58.04 | 127.1 |   | 104° | 28.9 | 100.00% |   | maskN_ | 995 |   | b0ff94 | 69.0 | 100.0 | 58.0 | 227.1 | ?                    | 104 |   |
| 261      | 170         | 255        | 167 | 66.67  | 65.49 | 132.2 |   | 118° | 32.8 | 100.00% |   | maskN  | 995 |   | aaffa7 | 66.7 | 100.0 | 65.5 | 232.2 | ?                    | 118 |   |
| 262      | 162         | 255        | 184 | 63.53  | 72.16 | 135.7 |   | 112° | 31.1 | 100.00% |   | maskN  | 995 |   | a2ff94 | 63.5 | 100.0 | 72.2 | 235.7 | near pink            | 112 |   |
| 263      | 234         | 254        | 217 | 92.13  | 85.43 | 177.6 |   | 92°  | 25.6 | 99.00%  |   | maskN  | 995 |   | eafed9 | 91.8 | 99.6  | 85.1 | 276.5 | pink                 | 92  |   |
| 264      | 192         | 254        | 143 | 75.59  | 56.3  | 131.9 |   | 94°  | 26.1 | 99.00%  |   | maskN  | 995 |   | c0fe8f | 75.3 | 99.6  | 56.1 | 231.0 | ?                    | 94  |   |
| 265      | 190         | 254        | 178 | 74.8   | 70.08 | 144.9 |   | 111° | 30.8 | 99.00%  |   | maskN  | 995 |   | befeb2 | 74.5 | 99.6  | 69.8 | 243.9 | pink                 | 111 |   |
| 266      | 186         | 254        | 179 | 73.23  | 70.47 | 143.7 |   | 114° | 31.7 | 99.00%  |   | maskN  | 995 |   | bafeb3 | 72.9 | 99.6  | 70.2 | 242.7 | pink                 | 114 |   |
| 267      | 179         | 254        | 163 | 70.47  | 64.17 | 134.6 |   | 109° | 30.3 | 99.00%  |   | maskN  | 995 |   | b3fea3 | 70.2 | 99.6  | 63.9 | 233.7 | ?                    | 109 |   |
| 268      | 147         | 254        | 116 | 57.87  | 45.67 | 103.5 |   | 107° | 29.7 | 99.00%  |   | maskN  | 995 |   | 93fe74 | 57.6 | 99.6  | 45.5 | 202.7 | pink                 | 107 |   |
| 269      |             |            |     |        |       |       |   |      |      |         |   |        |     |   |        |      |       |      |       |                      |     |   |
| 270      | 208         | 253        | 194 | 82.21  | 76.68 | 158.9 |   | 106° | 29.4 | 99.00%  |   | maskN  | 97  |   | d0fdc2 | 81.6 | 99.2  | 76.1 | 256.9 | pink                 | 106 |   |
| 271      | 195         | 253        | 166 | 77.08  | 65.61 | 142.7 |   | 100° | 27.8 | 99.00%  |   | maskN  |     |   | c3fda6 | 76.5 | 99.2  | 65.1 | 240.8 | pink                 | 100 |   |
| 272      | 151         | 253        | 153 | 59.68  | 60.47 | 120.2 |   | 121° | 33.6 | 99.00%  |   | maskN  |     |   | 97fd99 | 59.2 | 99.2  | 60.0 | 218.4 | ray                  | 121 |   |
| 273      | 226         | 254        | 196 | 88.98  | 77.17 | 166.1 |   | 89°  | 24.7 | 99.00%  |   | maskN  |     |   | e2fec4 | 88.6 | 99.6  | 76.9 | 265.1 | pink with town-light | 89  |   |
| 274      | 224         | 252        | 194 | 88.89  | 76.98 | 165.9 |   | 89°  | 24.7 | 99.00%  |   | maskN  |     |   | e0fcc2 | 87.8 | 98.8  | 76.1 |       | pink with town-light | 89  |   |
| 275      | 156         | 251        | 147 | 62.15  | 58.57 | 120.7 |   | 115° | 31.9 | 98.00%  |   | maskN  |     |   | 9cfb93 | 61.2 | 98.4  | 57.6 | 217.3 | ?                    | 115 |   |
| 276      | 155         | 251        | 118 |        |       | 108.8 |   | 103° | 28.6 | 98.00%  |   | maskN  |     |   | 9bfb76 | 60.8 | 98.4  |      | 205.5 |                      | 103 |   |
| 277      | 152         | 251        | 134 | 60.56  | 53.39 | 113.9 |   | 111° | 30.8 | 98.00%  |   | maskN  |     | † | 98fb86 | 59.6 | 98.4  |      | 210.6 | ×                    | 111 |   |
| 278      | 226         | 250        | 202 | 90.4   | 80.8  | 171.2 |   | 90°  | 25.0 | 98.00%  |   | maskN  |     |   | e2faca | 88.6 | 98.0  |      | 265.9 |                      | 90  |   |
| 279      | 222         | 250        | 199 |        |       | 168.4 |   | 93°  | 25.8 |         |   | maskN  |     |   | defac7 | 87.1 | 98.0  |      | 263.1 |                      | 93  |   |
| 280      | 185         | 250        | 166 |        |       | 140.4 |   | 106° | 29.4 |         |   | maskN  |     |   | b9faa6 | 72.5 | 98.0  |      | 235.7 |                      | 106 |   |
| 281      | 163         | 250        | 143 |        |       | 122.4 |   | 109° | 30.3 |         |   | maskN  |     |   | a3fa8f | 63.9 | 98.0  |      | 218.0 |                      | 109 |   |
| 282      | 140         | 250        | 137 |        |       | 110.8 |   | 118° | 32.8 |         |   | maskN  |     |   | 8cfa89 | 54.9 | 98.0  |      |       | near pink            | 118 |   |
| 283      | 131         | 250        | 130 |        |       | 104.4 | _ | 119° | 33.1 |         |   | maskN  |     |   | 84fa82 | 51.4 | 98.0  |      | 200.4 |                      | 119 |   |
| 284      | 223         | 249        | 201 |        | 80.72 |       |   | 92°  |      | 98.00%  |   | maskN  |     |   | dff9c9 | 87.5 | 97.6  |      | 263.9 |                      | 92  |   |
| 285      | 179         | 249        |     | 71.89  |       |       |   | 102° |      | 98.00%  |   | maskN  |     |   | b3f996 | 70.2 |       |      | 226.7 |                      | 102 |   |
| (married | 14          | 4          |     | Bcode_ |       |       |   |      |      |         |   |        |     |   |        |      |       |      |       |                      |     |   |
|          |             | rmal View  |     | Ready  |       |       |   |      |      |         |   |        |     |   |        |      |       | Sum= | .0    | ▼                    |     |   |

## How criterion looks like (AND logic between columns)

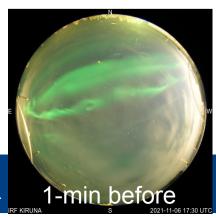
| category      | OR conditions      | Н             | G            | R/G          | B/G   | (R+B)/G |
|---------------|--------------------|---------------|--------------|--------------|-------|---------|
| strong aurora | N <sub>2</sub> -1a | 0.25≤, <0.34  | 0.97≤        | 0.50≤, <0.92 |       | <1.90   |
| strong aurora | N <sub>2</sub> -1b | 0.25≤, <0.34  | 0.995≤       | 0.50≤, <0.95 |       | <1.90   |
| strong aurora | 1                  | 0.26≤, <0.36  | 0.95≤        | <0.75        |       | <1.90   |
| strong aurora | 2                  | 0.30≤, <0.36  | 0.88≤        | <0.70        | <0.66 |         |
| strong aurora | 3                  | 0.30≤, <0.34  | 0.83≤        | <0.62        | <0.57 |         |
| strong aurora | 4                  | 0.32≤, <0.36  | 0.76≤        | <0.43        | <0.50 | <0.89   |
| strong aurora | 5                  | 0.30≤, <0.352 | 0.77≤, <0.83 | <0.60        | <0.64 | ≥0.96   |
| strong aurora | 6                  | 0.26≤, <0.31  | 0.75≤, <0.95 | <0.69        | <0.54 |         |
| green arc     | 1                  | 0.32≤, <0.36  | 0.69≤        | <0.47        | <0.51 |         |
| green arc     | 2                  | 0.36≤, <0.41  | 0.69≤        | <0.70        | <0.80 |         |
| green arc     | 3a                 | 0.28≤, <0.35  | 0.65≤, <0.80 | <0.70        |       | <1.21   |
| green arc     | 3b                 | 0.28≤, <0.35  | 0.65≤, <0.80 | <0.70        | <0.62 |         |
| green arc     | 4                  | 0.24≤, <0.27  | 0.59≤, <0.70 | <0.80        | <0.55 |         |
| green arc     | 5                  | 0.20≤, <0.24  | 0.59≤, <0.77 | <0.92        | <0.65 |         |
| green arc     | 6                  | 0.30≤, <0.36  | 0.55≤, <0.68 | <0.61        | <0.61 |         |
| green arc     | 7                  | 0.25≤, <0.35  | 0.50≤, <0.69 | <0.75        | <0.51 |         |

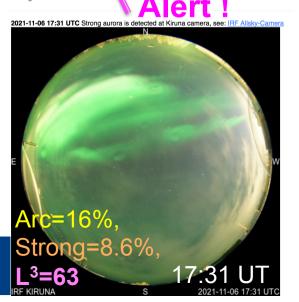



# Two-step calculation to define activity level

1. First convert each image (1 million pixels) into a simple set of numbers.

1a. Classify each pixel into "strong", "green arc", "diffuse", cloud, artificial light, and moon. We use "expert system" on the color (RGB values) each pixel


1b. Obtain coverage (%) of each category and average intensity of "strong" aurora in real-time (every minute). ⇒ This set of numbers is "All-Sky Camera auroral index"


IRF-KAGO data (2021-11-06)



Strong aurora is detected at Kirur

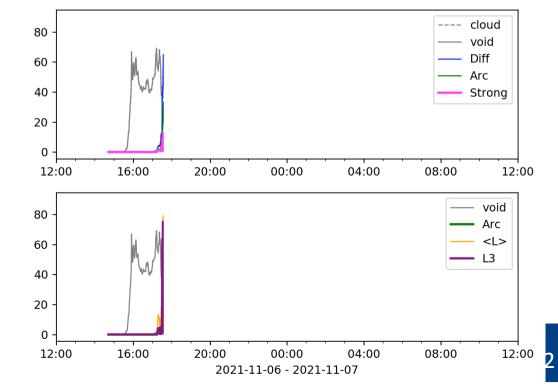
2021-11-06







#### example: 2021-11-06


# Real-time products

#### www.irf.se/alis/allsky/nowcast/latest.csv

```
DATE,
          TIME, DOY, Diff, Arc, Strong, void, cloud, <L>,
                                                            L^3
2021-11-06,17:24:00,310, 4.5, 4.1, 0.74, 63.5, 63.5, 5.4,
                                                            0.4
2021-11-06,17:25:00,310, 6.6, 5.6, 1.54, 58.5, 58.5, 10.4, 1.4
2021-11-06,17:26:00,310, 6.1, 4.9, 1.02, 54.9, 54.9, 7.7, 1.3
2021-11-06,17:27:00,310, 11.5, 7.5, 2.09, 42.2, 42.2, 12.2, 2.2
2021-11-06,17:28:00,310, 12.3, 9.2, 3.80, 37.7, 37.7, 19.2,
                                                          5.1
2021-11-06,17:29:00,310, 9.9, 5.6, 0.95, 44.0, 43.9, 5.7,
                                                           0.4
2021-11-06,17:30:00,310, 14.1, 7.5, 0.79, 38.0, 38.0, 10.6,
                                                          2.0
2021-11-06,17:31:00,310, 39.7, 16.5, 8.59, 10.0, 9.9, 66.8,
                                                           63.5
2021-11-06,17:32:00,310, 35.7, 14.8, 9.53, 5.5, 5.5, 57.8,
                                                           47.1
```

#### like moment file

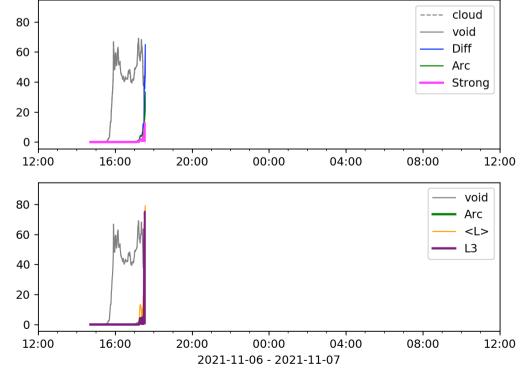
#### www.irf.se/alis/allsky/nowcast/latest.png



#### last hour

www.irf.se/alis/allsky/nowcast/latest-hour.png

M. Yamauchi Kiruna, Sweden


### First break-up

# Real-time products

#### www.irf.se/alis/allsky/nowcast/latest.csv

```
DATE, TIME, DOY, Diff, Arc, Strong, void, cloud, <L>, L^3
2021-11-06,17:24:00,310, 4.5, 4.1, 0.74, 63.5, 63.5, 5.4, 0.4
2021-11-06,17:25:00,310, 6.6, 5.6, 1.54, 58.5, 58.5, 10.4, 1.4
2021-11-06,17:26:00,310, 6.1, 4.9, 1.02, 54.9, 54.9, 7.7, 1.3
2021-11-06,17:27:00,310, 11.5, 7.5, 2.09, 42.2, 42.2, 12.2, 2.2
2021-11-06,17:28:00,310, 12.3, 9.2, 3.80, 37.7, 37.7, 19.2, 5.1
2021-11-06,17:29:00,310, 9.9, 5.6, 0.95, 44.0, 43.9, 5.7, 0.4
2021-11-06,17:30:00,310, 39.7, 16.5, 8.59, 10.0, 9.9, 66.8, 63.5
2021-11-06,17:32:00,310, 35.7, 14.8, 9.53, 5.5, 5.5, 57.8, 47.1
```

#### www.irf.se/alis/allsky/nowcast/latest.png

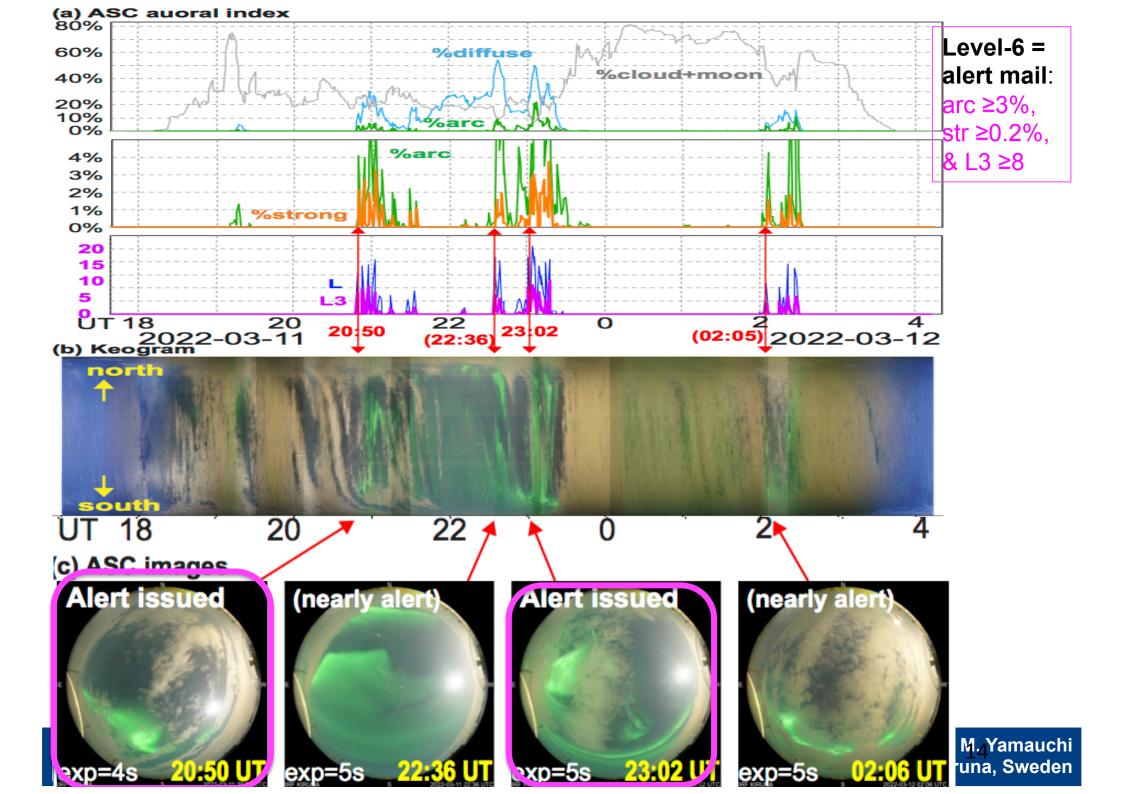


#### Level-6:

arc ≥3%, str ≥0.2% L³ ≥8

#### Level-4a:

arc ≥2%, str ≥0.2%  $I^3 \ge 5$ 


#### Level-4b:

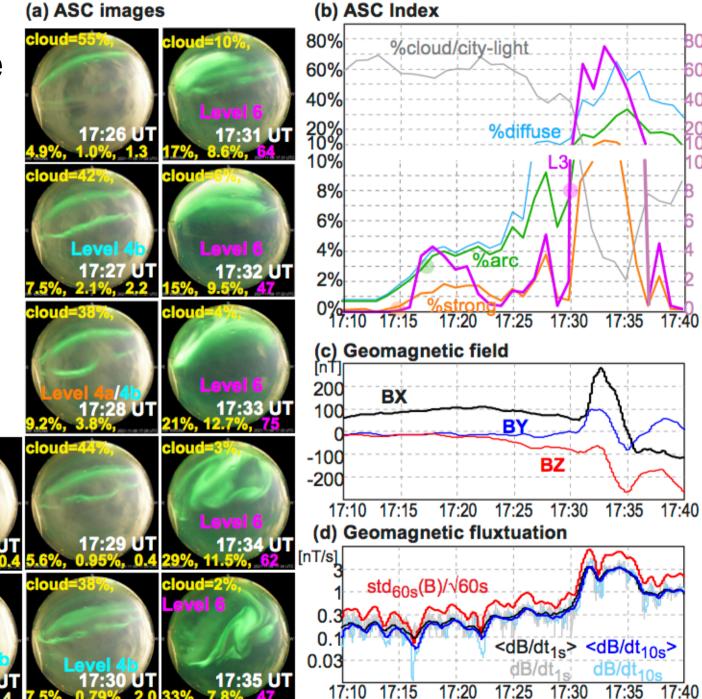
arc ≥1%, str ≥0.1% str·L<sup>3</sup> ≥1.5 (%)

see also

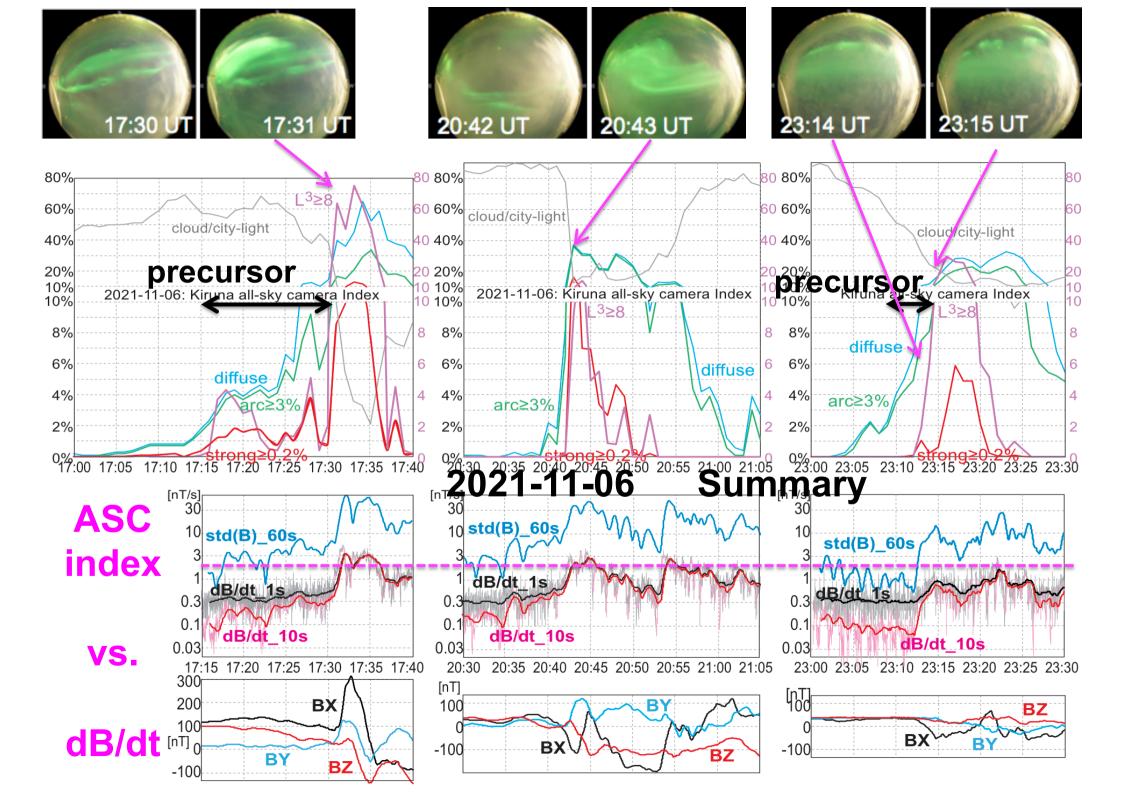
www.irf.se/alis/allsky/nowcast/latest-hour.png

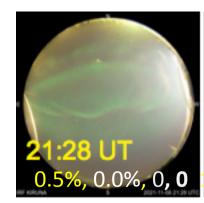
M. Yamauchi Kiruna, Sweden

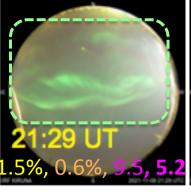


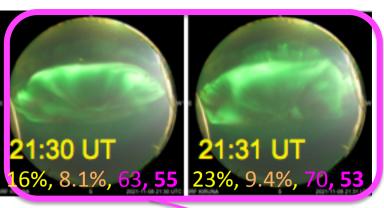

## Two-step calculation to define activity level

- 1. Convert image (255x255x255 colors x 1 million pixels information) into simple set of numbers = ASC auroral index.
  - 1a. Classify each pixel into "diffuse", "green arc", "strong (=saturated or mixed with N<sub>2</sub><sup>+</sup> line)", cloud, artificial light, and moon. We use R, G, B, H (in version-0, we used H, S, L only)
  - 1b. Obtain % of pixel coverage of each category and also average intensity of "strong" aurora. ⇒ This set of numbers is "All-Sky Camera auroral index". ⇒ Real time production every minutes
- 2. Use this index to define the level of aurora.
  - 2a. Level 6: clear breakup ⇒ Done
  - 2b. Level 5: breakup-like motion with less intensity ⇒ to be identified
  - 2c. Level 4: nearly breakup (possible precursor) ⇒ under tuning



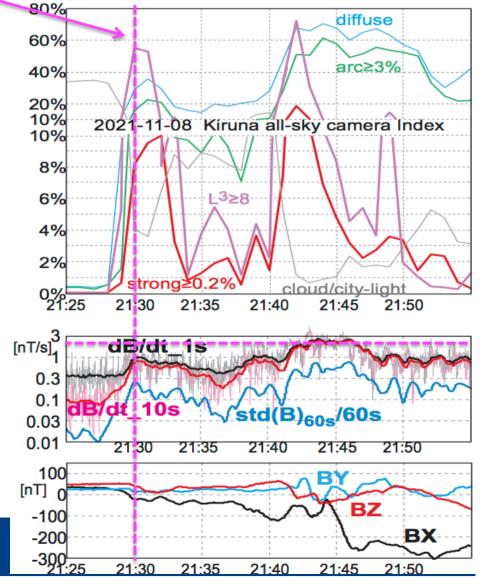


# Detail check: 2021-11-06 case


Kiruna Atmospheric and Geophysical Observatory data (2021-11-06)









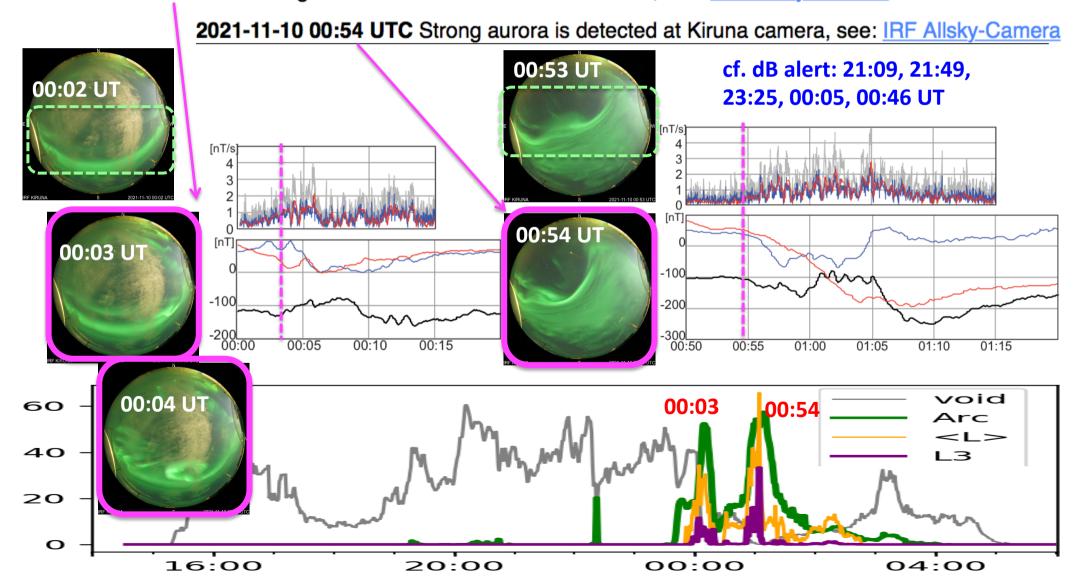



# Works with cloud

2021-11-08






To: aurora-alerts@irf.se

Reply-To: www@irf.se

Strong aurora is detected at Kiruna camera

# post-midnight: after 01:30 LT, alert Omega band = success

2021-11-10 00:03 UTC Strong aurora is detected at Kiruna camera, see: IRF Allsky-Camera



## **Summary (version 1.0)**

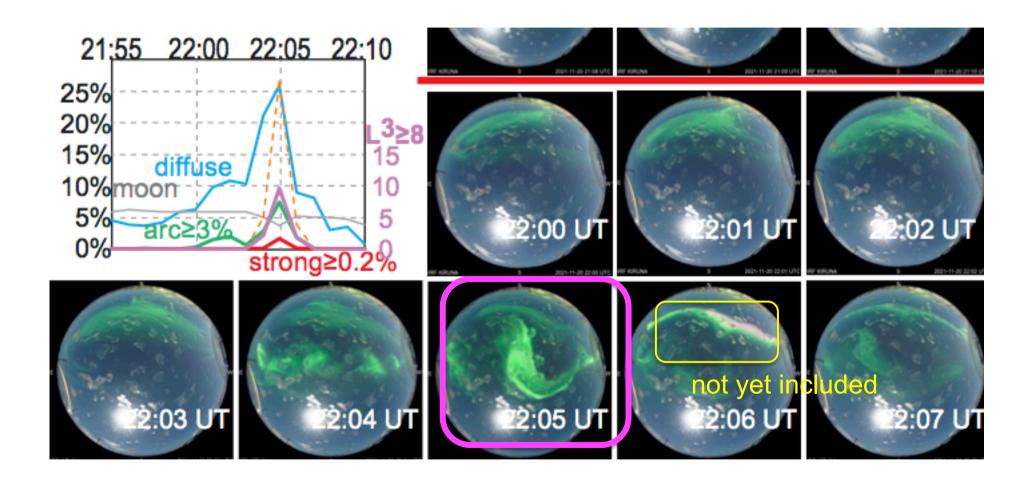
Pixel-to-pixel judging of color (R,G,B,H) to classify into "strong aurora", "green arc", "diffuse", "cloud", etc., using a simple criteria (expert system).

Coverage (%) and weighted luminosity ⇒ All-sky camera "auroral index"

- ⇒ update every minute in ascii format <a href="www.irf.se/alis/allsky/nowcast/latest.csv">www.irf.se/alis/allsky/nowcast/latest.csv</a>
- ⇒ define the activity level from this index (Level 6 = alert e-mail).

Level-6 corresponds to all local "expanding enhancement", including traveling bulge, pre-midnight breakup & post-midnight omega band onset (cf. magnetic signature is not sufficient in many cases)

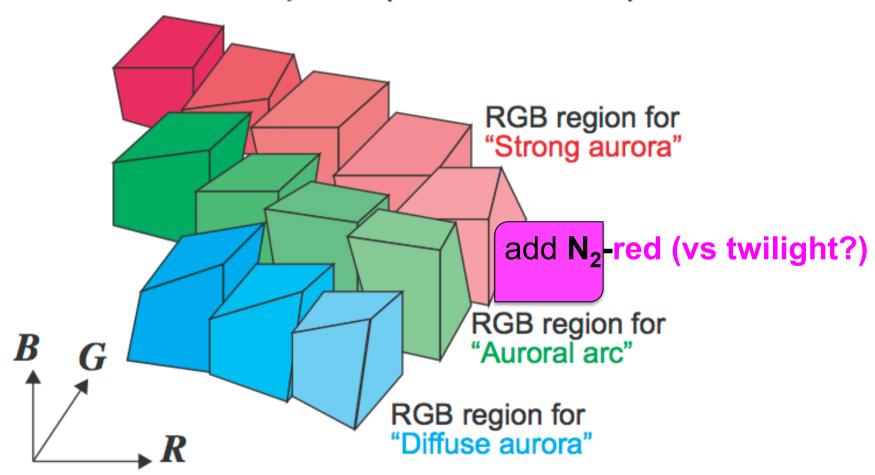
#### **Beta-test in operation since November 2021**


⇒ A 90% success rate so far (10% of false-negative and 10% of false positive)

### Thus, simple expert system (pixel-judge) works!

- Machine learning method to be combined in future
- Most important: camera with fixed exposure time is better

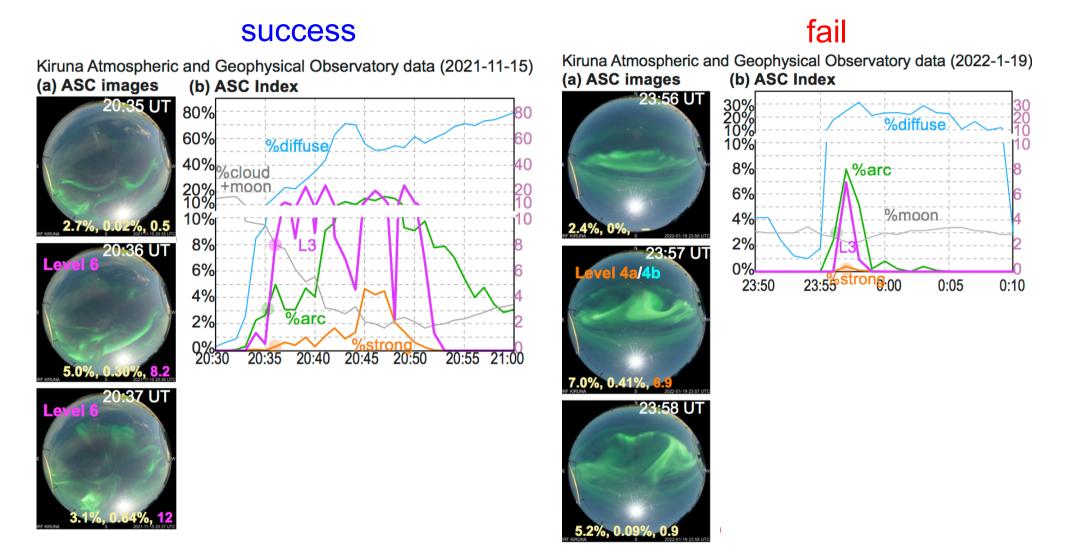



## Future improvement: e.g., N<sub>2</sub>-red





### 1. First, Classify each pixel (255x255x255 colors)


## RGB 3-D space (256x256x256)

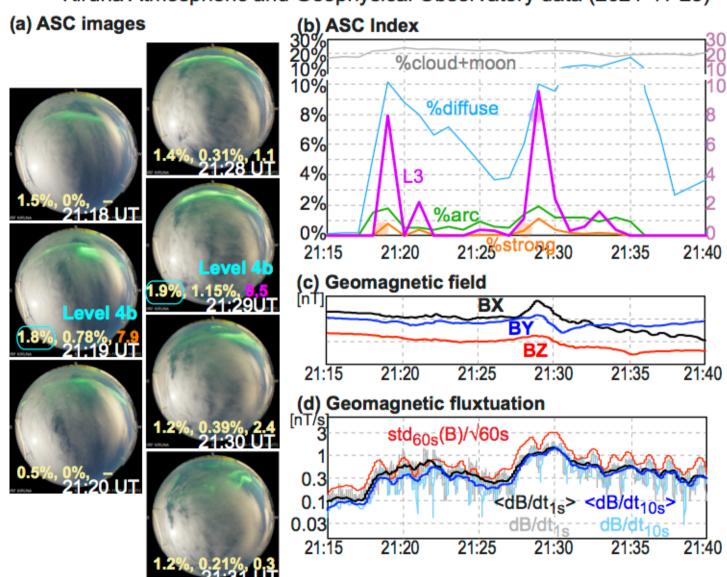


Each "box" represents "this is clearly aurora etc."
There is some overlap, but only one type is chosen



## Future improvement: e.g., moon cases




#### Color changes with moon/twilight

⇒ need further non-linear treatment when the moon is detected



## northern edge

fail
Kiruna Atmospheric and Geophysical Observatory data (2021-11-23)





## toward v. 2 and v.3

As additional parameter to define the level, UT information and previous 5-min activity should be included ⇒ version 1.2

We plan to add "weak-breakup" and "strong  $N_2$  line") in the definition of aurora because there are some rooms to add them in the R-G-B space.  $\Rightarrow$  version 1.3

Level-4a and Level-4b are good candidate for last minute precursor, but need more tuning ⇒ We plan to use NN to find out good set that predicts Level-6. ⇒ version 2

As external index, magnetic activity can be used to define the level. Baseline is  $\Delta Bx$  and  $dB/dt_10sec. \Rightarrow version 2$  (i.e., additional "index")

The moon filter can be tuned (currently 14 times the moon radius are masked), i.e., reducing R,G,B values when moon is identified . ⇒ version 3

Entire FOV should be divided into two-three regions (north, middle, south) and obtaining the index values for each regions when computer power improves. ⇒ version 3



# some useful links (nowcast/Kiruna)

Magnetometer + keogram combined

https://www2.irf.se/mag/

All-sky camera (image + past movie + keogram)

https://www.irf.se/alis/allsky/krn/dark.html

ASC auroral index (past 1 hour)

https://www.irf.se/alis/allsky/nowcast/latest-hour.png

Weather forcast

https://www.smhi.se/q/Kiruna/605155#ort=605155,Kiruna,Kiruna,Sverige,67.85/20.216667



#### Level-6:

arc ≥3%, str ≥0.2% L³ ≥8

#### Level-4a:

arc ≥2%, str ≥0.2%  $L^3 \ge 5$ 

#### Level-4b:

arc ≥1%, str ≥0.1% str·L<sup>3</sup> ≥1.5 (%)

ASC auroral index is a good start in defining auroral activity level.

Ascii form text file is good format to store real-time data

## Appendix-3: file format

```
Format
                       similar to IAGA-2002
 Source of Data
                       Swedish Institute of Space Physics
 Station Name
                       Kiruna
 IAGA CODE
                       KIR
Geodetic Lat.
                       67.83
Geodetic Long.
                       20.42
Elevation
                       400
Pixels (for average)
                       140000 (2500)
Reported
                       occupancy of auroral pixels and intensity
  Occupancy (% pixels) Diff(diffuse), Arc, Strong, void, cloud
  Intensity (average) <L>, <L*L*L> (for strongest pixels only)
                       ASC, Sony alpha7s, Nikon Nikkor 8 mm 1:2.8
Sensor
Digital Sampling
                       1 minute
Integration time
                       1 sec
                       Provisional
Data Type
DATE,
          TIME,
                   DOY, Diff, Arc, Strong, void, cloud,
                                                       <L>,
                                                              L^3
2021-11-15,14:16:00,319, 0.0, 0.0, 0.00, 0.0, 0.0,
                                                       0.0,
                                                              0.0
2021-11-15,14:17:00,319, 0.0, 0.0, 0.00, 0.0, 0.0,
                                                       0.0.
                                                              0.0
2021-11-15,20:33:00,319, 2.6, 0.3, 0.01, 9.8, 0.9,
                                                       0.0,
                                                              0.0
2021-11-15,20:34:00,319, 8.5, 2.3,
                                    0.10, 9.6,
                                                 0.8, 4.1,
                                                              1.3
2021-11-15,20:35:00,319, 9.4, 2.7,
                                    0.02, 9.5, 0.7,
                                                      1.6,
                                                              0.5
2021-11-15,20:36:00,319, 16.6, 5.0,
                                    0.30, 8.0,
                                                 0.6,
                                                      14.1,
                                                              8.2
2021-11-15,20:37:00,319, 23.4, 3.1, 0.64, 7.7, 0.5, 17.2,
                                                             12.1
2021-11-15,20:38:00,319, 22.4, 3.1, 0.43, 6.2, 0.6,
                                                      13.6,
                                                              8.5
2021-11-15,20:39:00,319, 29.2, 4.7, 0.99, 5.2, 0.9,
                                                      29.1,
                                                             23.6
2021-11-15,20:40:00,319, 34.8, 4.1, 0.31, 5.6, 1.4,
                                                      12.7,
                                                              8.9
2021-11-15,20:41:00,319, 43.6, 9.1, 1.13, 3.2, 0.6,
                                                      37.8,
                                                             24.6
2021-11-15,20:42:00,319, 62.6, 9.7, 1.71, 3.1,
                                                 0.8,
                                                      24.1,
                                                              8.6
2021-11-15,20:43:00,319, 70.8, 12.6, 0.87, 2.8, 0.8,
                                                      23.1,
                                                              7.0
2021-11-15,20:44:00,319, 70.1, 10.6, 1.39, 3.3,
                                                 0.8,
                                                      16.8,
                                                              4.6
2021-11-15,20:45:00,319, 55.7, 15.2, 4.66, 2.2, 0.3,
                                                             12.5
                                                      35.9,
```