
Nitrogen Ion TRacing **Observatory (NITRO): Toward** understanding the Earth-Venus-Mars Difference of N/O Ratio

M. Yamauchi, I. Dandouras, H. Rème, and NITRO proposal team.

IRF (Kiruna, Sweden), IRAP (Toulouse, France), NASA/GSFC (USA), UNH (Durham, USA), UCL/MSSL (London, UK), U. Bern (Switzerland), IWF (Graz, Austria), IAP/ASCR (Prague, Czech), IASB-BIRA (Brussels, Belgium), LATMOS/ IPSL (Guyancourt, France), CNRS (Orleans, France), Aalto U. (Helsinki, Finland), Inst Space Sci. (Bucharest, Romania), LPP (Paris, France), SwRI (San Antonio, USA), UCB/SSL (Berkeley, USA), UCLA (Los Angeles, USA), Tohoku U. (Sendai, Japan), IAXA/ISAS (Sagamihara, Japan), FMI (Helsinki, Finland), etc.

Venus

Earth

Mars

Multi-disciplinary aspects of N⁺ and N₂⁺ ions

Origin of Life (ancient atmospheric composition)

Amino acid formation depends on oxidation state of N (NH₃ or N₂ or NO_x) = relative abundance of N, O, & H near surface.

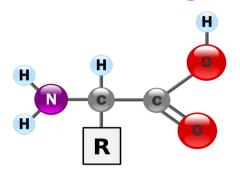
Planetary atmosphere (origin and evolution)

N is missing on Mars (0.01% of Earth ~ Venus ~ Titan). This could be even be the reason why we could not find life on Mars.

Magnetosphere (ion dynamics and circulation)

N⁺/O⁺ changes with **F10.7 & Kp** (Akebono cold ion observations). N_2^+ is the major molecular cold ion $(N_2^+ >> NO^+, O_2^+)$.

Ionosphere (heating and ionization) + Exosphere!

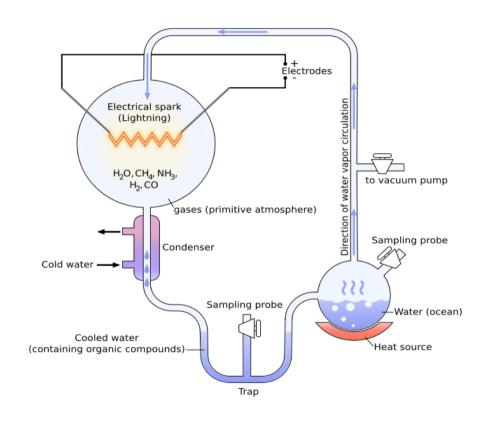

N⁺/N₂⁺/O⁺/O⁺⁺ ratio @ **topside ionosphere** depends on solar activity.

Plasma Physics (acceleration)

Different V_0 between M/q=14 and M/q=16 gives extra information.

But, no observation of N⁺/O⁺ ratio or N₂⁺/NO⁺/O⁺ ratio at 0.03-30 keV range in space near Mars/Venus/Earth.NITRO for M4: 3

Nitrogen is an essential element for life



Miller's experiment (Miller and Urey, 1959).

Pre-biotic type atmosphere + discharges

⇒ formation of amino-acids!

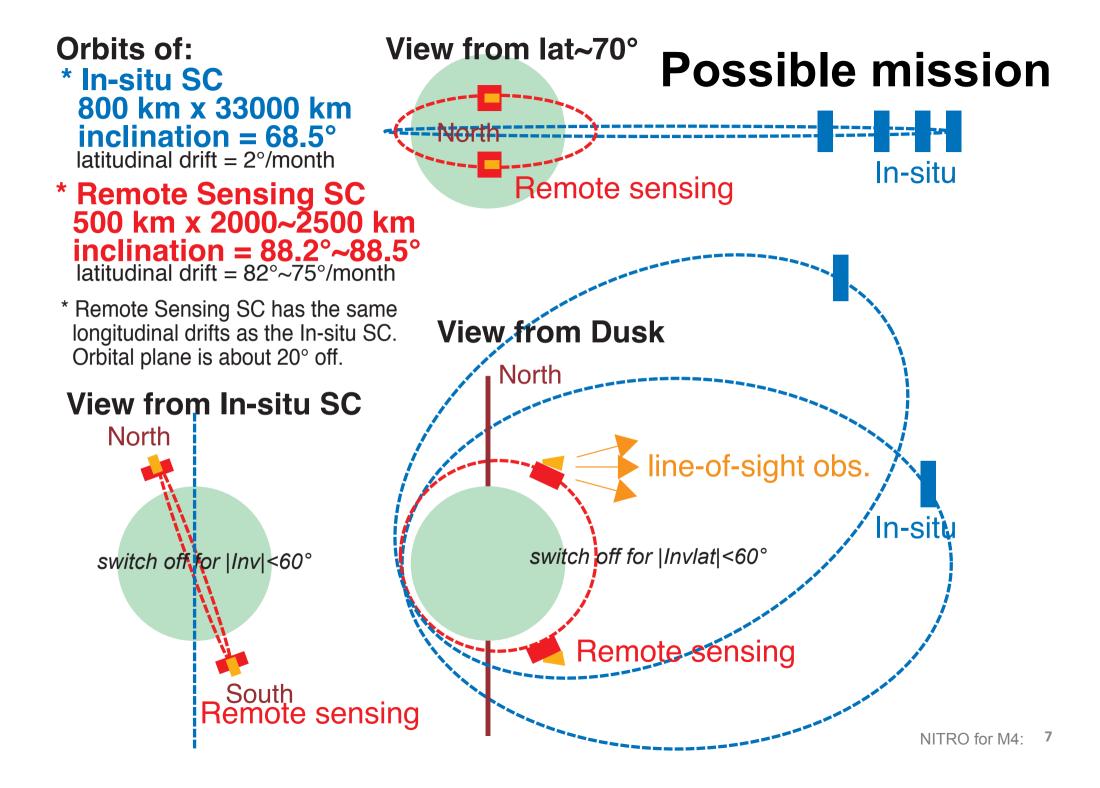
The result depends on the **oxydation state of N** reduced form (NH_3) neutral form (N_2) oxidized form (NO_x)

⇒Formation of pre-biotic molecules is most likely related to the **relative abundance of N**, **O**, **and H** near the surface

⇒(not only the amount !)

To understand N problem,

We must first investigate the near-Earth space because N⁺ was poorly understood even there. What we know are:


- (a) Dependence on geomagnetic activities is larger for N⁺ than O⁺ for both <25 eV (Yau et al., 1993) and > 30 keV (Hamilton et al., 1988).
- (b) N⁺/O⁺ ratio varies from <0.1 (quiet time) to ≈ 1 (large storm). What we call O⁺ is eventually a mixture of N⁺ and O⁺. This probably applies even to O⁺⁺.
- (c) [CNO group]⁺ at <10 keV range is abundant in the magnetosphere.
- (d) Ionization altitude of N is likely higher than for O in the ionosphere (when O⁺ is starting to be heated, majority of N is still neutral).
- (e) N/O ratio at Mars and C/O ratio at Moon are extremely low compared to the other planets.
- (f) Isotope ratio (e.g., $^{15}N/^{14}N$) is different between different planets/comets. (But instrumentation related to this requires M/ \triangle M > 1000, and is outside our scope.)

Possible methods of separating N⁺ ⇔ O⁺

(1) In-situ method

```
Mass Spectrometer (cold): high M/∆M
Mass Spectrometer (energetic): high M/∆M
Ion (Mass) Analyser (hot): high g-factor & marginal M/∆M is improving
  — Magnet, grid-TOF, reflection-TOF, MCP-MCP TOF, shutter-TOF, etc —
Photoelectron: exact M but it gives only connectivity from ionosphere
Wave (\Omega_{O+} \neq \Omega_{N+}): a challenge because of \Delta f/f \propto \Delta M/M < 7\%
```

- (2) Remote sensing of emission (line-of-sight integration) from above the ionosphere (>1800 km) & outside the radiation belt (>60° inv) N^+ (91nm, 108nm), N_2^+ (391nm, 428nm), NO^+ (123-190nm=weak), NO⁺ (4.3 μm), O⁺ (83nm), O⁺ (732/733 nm): exact M but must fight against contamination from ionosphere and sensitive to radiation belt background
 - ⇒ By combining both methods (i.e., at least two spacecraft), we have 3-D mapping of N/O in the magnetosphere NITRO for M4: 6

Instrument accommodations

Remote sensing #2 SC = square

Z=nadir

CCD camera

Both designs (JAXA/SwRI) of

keV ion analyser are listed

CCD camera

Low-energy ion

Low-energy ion NMS

X=ram

Z=nadir

solar panel tilts 0°-90°

Electron

keV ion

UV/Visible

Propultion system

keV ion

JV/Visible

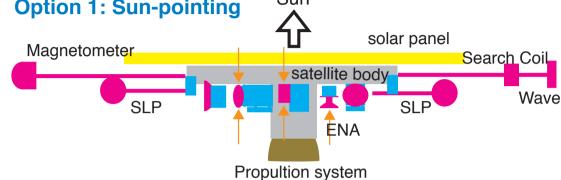
4-5 m boom

4-5 m boom

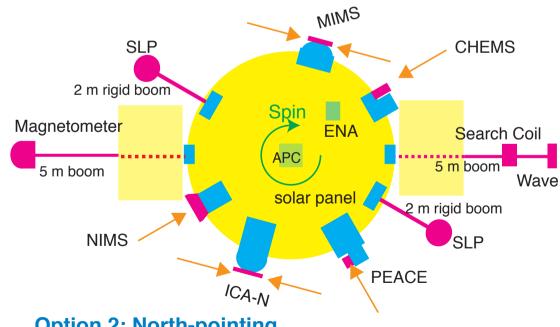
booms

Magnetometer

2 m boom


Search Coil

Wave


SI P

on 0°-360° turn table

In-situ #1 SC = 1.5~2 m diameter
Option 1: Sun-pointing

6 ion, 1 electron, 1 cold instruments
Active Potential Control is place in the center

Option 2: North-pointing

=> same as Cluster with extra arm for particle's TRO for M4:

Payloads

In-situ #1 mother (spinning)

- * Mass spectrometer (cold) (Bern)
- * <u>lon analyzers (0.03 30 keV):</u>
 - (1) Heavy ions only (Kiruna)
 - (2) Wide mass range (Toulouse)
- * Ion mass analyzer (> 30 keV) (UNH)
- * Magnetometer (Graz)
- * Langmuir Probe (Brussels)
- * Waves $(\Omega_N \neq \Omega_O)$ (Prague)
- * Search Coil $(\Omega_N \neq \Omega_O)$ (Orleans)
- * Electron analyzer (London)
- * ENA monitoring substorm (Berkeley)*
- * (Potential Control=SC subsystem)
 - * underline: core,
 - * colored: important,
 - * black: optional

Remote sensing & monitoring (3-axis)

- * Optical (emission) (LATMOS & Japan)
 - (1) <u>N+: 91 nm, 108 nm</u>
 - (2) N₂+: 391 nm, 428 nm
 - (3) NO+: 123-190 nm, 4.3 μm
 - (4) O+: 83 nm, <u>732/733 nm</u>
- * Mass spectrometer (cold N⁺ and
- neutrals) (Goddard)
- * Ion analyzer (< 0.1 keV) (Kiruna)
- * Langmuir Probe (Brussels)
- * Magnetometer (Graz)
- * Ionospheric optical camera (TBD)
- * Electron analyzer (London)
- * Waves $(\Omega_N \neq \Omega_O)$ (Prague)
- * Search Coil $(\Omega_N \neq \Omega_O)$ (Orleans)
- * Ion analyzer (< 50 keV) (Japan)

Summary

With an unique orbital configuration and recently developed instrumentations, NITRO can target Nitrogen 3-D dynamics for the first time in the Earth's magnetosphere, as the first step in understanding the nitrogen differences in the terrestrial planets.