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Concentration of Aurora Arcs from the viewpoint of Alfvén wave reflection at the Ionosphere
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A one-dimensional plane Alfvén wave reflection model bouncing between the ionosphere and the magnetosphere is used to simulate a positive feedback mechanism between local conductivity enhancement by electron precipitation and concentration of field-aligned current by conductivity gradient.  The model is linear for the electric field and nonlinear for the conductivity.  The simulation shows stronger localization of the field-aligned current for lower background conductivity because the ratio between the enhanced conductivity and the background conductivity is larger for lower background conductivity.  The same tendency is obtained for all the parameter sets within realistic ranges so far simulated, and hence the result is a qualitative nature of the model.  The result agrees with recent observations that the average precipitation energy is higher during winter than during summer.  This large-scale model also suggests that the mixing distance that is determined by the small-scale physics affects the large-scale magnetosphere-ionosphere interaction.

Introduction

While auroral activity is strongly controlled by the solar wind input, not all the controlling factors of actual aurora intensity, even the statistical ones, are well known.  One obvious controlling factor is the ionospheric conductivity ().  Both satellite and ground-based statistics show that the cross-polar cap potential drop, the total field-aligned current intensity, and the subsequent joule dissipation are larger in the summer hemisphere (higher ionospheric conductivity) than in the winter hemisphere [e.g., Fujii et al., 1981; Fujii and Iijima, 1987; Yamauchi and Araki, 1989; Lu et al., 1994].  On the other hand, satellite statistics of the precipitation particle energy show that the potential drop of the double layers above the discrete aurora is higher in the winter hemisphere than in the summer hemisphere [Newell and Meng, 1996].  

Considering the nearly-linear relation between the field-aligned potential drop and the field-aligned current density [Knight, 1973], these observations suggest that high ionospheric conductivity makes the field-aligned current wide-spread, whereas low ionospheric conductivity makes the field-aligned current weak in total intensity but concentrated in small regions.  Such concentration is a rather natural consequence of positive feedback between the localized enhancement of the ionospheric conductivity and the localized intensification of the field-aligned current as illustrated in Figure 1.  When a localized electric field carried by an Alfvén wave arrives at the ionosphere, it drives a localized current and hence a localized field-aligned current.   This field-aligned current drives the field-aligned electric potential according to Knight's law.  The precipitation particles accelerated by this potential drop cause a local enhancement of the conductivity, and the resultant conductivity gradient further localizes and enhances the field-aligned current as the divergence of the localized ionospheric current.  Since the percentage of the increase of the conductivity (∆/) is larger for lower background conductivity if the amount of conductivity enhancement is the same, one can expect a stronger feedback for a lower background conductivity.

However, no quantitative examination has been done on such a feedback scenario.  In this paper, this feedback instability is studied using a simple 1-D magnetosphere-ionosphere coupling model, in which the electric field and the field-aligned current are carried by linear magnetohydrodynamics (MHD) Alfvén waves bouncing between the ionosphere and the magnetosphere with simple linear reflections at both sides, and the conductivity enhancement by the field-aligned current is simplified using Knight's relation [Sato and Iijima 1979; Kan and Sun 1985].  The model is linear and dispersion-free unless we introduce conductivity enhancement.  

Strictly speaking, we must use a 2-D model where divergence of the Hall current can be included because the Hall conductivity (H) is normally larger than the Pederson conductivity (P).  However, this simple 1-D model still contains many free parameters as described in the next section.  Meanwhile our purpose is limited to examining the qualitative dependence of the feedback instability on the different ionospheric conductivity.  Therefore, it is advisable to use the simplest configuration possible.  The positive feedback mechanism described in Figure 1 contains the divergence of the Pederson current in its direct chain of positive feedback, and therefore this 1-D model (with P > H assumption) should give enough information for our purpose.

Minimizing the Hall current effect, this 1-D model might also be applied to the magnetosphere-surface coupling in the Mercury magnetosphere where particles may directly hit the conducting surface.  However, the basic parameters are quite different from the terrestrial magnetosphere-ionosphere coupling, and the Mercury case is not considered in this paper. 

2. Model

Since we deal with a large-scale phenomenon (> 100 km), we employ the bouncing plane MHD Alfvén wave model linearly reflected at the ionosphere without dispersion [Sato and Iijima 1979].  Figure 2a illustrates the configuration. 

2.1. Alfvén wave model

The simplest forms of the Maxwell’s equation and MHD momentum equation for the Alfvén mode   are expressed as: 

µ dj/dt = -       E 

dE/dt = VAz   (µ j   VAz)

where z is the magnetic field direction and VA is the Alfvén velocity.  Using the plane wave approximation (d/dt = ±VAd/dz and E = 0), the above two equations become identical to each other.  Integrating over z, we finally have:

Iwave = ± AEwave
where A = 1/(µVA)  and sign (±) depends on the propagation direction of the wave (parallel or antiparallel to the magnetic field).  The magnetic field deviation is expressed as:

bwave = µIwave  z 

2.2. Reflection at the ionosphere

The matching condition during the reflection states that the incident wave, the reflect wave, and the transmitting field staying in the ionosphere must satisfy 

∆Eincident + ∆Ereflect = E(new) - E(old)

µA (∆Eincident - ∆Ereflect)  
= ∆bincident + ∆breflect 

= µI(new) - µI(old)

where ∆ is the stepwise change by the wave, E and I are the ionospheric electric field and height-integrated current.  Combining this with the height-integrated ionospheric Ohm's law:

I = PE +  z   HE   
(1)

we have

[(A+P)2 + H2]∆E
= 2A[(A+P) - (H z  )] ∆Eincident - [(A+P)∆P + H∆H  + A∆H z  )] E(old)  
(2)

and

∆Ereflect = ∆E - ∆Eincident  
(3)

E(new) = ∆E + E(old)  
(4)

The divergence of equation (2) is identical to the formula found in Kan and Sun [1985].  

2.3. Conductivity enhancement

Next, we need to give the enhancement of the conductivity (∆P, ∆H) due to the particle precipitation.  A simple way to introduce ∆ is to assume that ∆ is a function of average energy of the precipitating electron, i.e., the field-aligned potential drop [e.g., Kan and Sun].  Using Knight's relation [1973], the field-aligned potential drop can be substituted to the field-aligned current:

J// = - I    
(5)

where J// > 0 means upward current (electron precipitation) in both hemispheres.  Then the simplest way to introduce ∆ becomes:

P2 = 02 +  J*// (J*// - Jthres/Jsatur)  
(6)

H/P = constant

where J*// =  min (J// ,  Jsatur)/Jsatur  and it is zero if J// is lower than Jthres.  Since we are considering a large-scale interaction where the dispersion effect (or effect of finite wave number) can be ignored, we should take a rather low value of Jsatur = 1~2 µ A/m2 [e.g., Iijima and Shibaji, 1987].   

The conductivity enhancement takes place after the wave is reflected because it is caused by the precipitating particles behind the wave, and hence the change of the conductivity is introduced at the next reflection at the ionosphere.  Strictly speaking the conductivity increase and the wave reflection are not simultaneous, and hence one must calculate the change of the current and field purely due to the conductivity change before the next incident wave arrives.  However, the above simplified scheme is good enough to examine the localization effect as the first-order approximation the conductivity enhancement does not directly affect the next wave which arrives within a few minutes whereas the conductivity enhancement should also take place a minute or so after the previous reflection.

2.4. Reflection at the magnetosphere

There is a freedom in modeling the next incident wave after the reflected wave propagates back to the magnetosphere.  One way is to assume a simple linear relation:

∆Eincident =  ∆Ereflect  
(7)

where -1 <  < +1 with positive  on the closed field line region (reflecting in the opposite hemisphere) and positive  on the open field line region [Kan and Sun, 1985].  

If the reflected wave bounces back to the source region where the driving convection exists, one may also assume that the driving electric field of the next incident wave will be the same as the original one.  In this case, the difference between the magnetospheric electric field and the ionospheric electric field will form the new incident wave (or electric field), i.e., 

∆Eincident = Ems - (EEms/ Ems)(Ems/ Ems)    
(8a)

This is nearly the same as the above case of =-1 except that non-zero background convection exists and only the electric field component perpendicular to the driving convection is transmitting to the ionosphere.  In other words, we ignore the Hall current effect of the reflected electric field.  Such treatment is inevitable in this 1-D modeling because the system otherwise becomes unstable with an infinite free energy source.  In this model, one may also include a decay of the driving convection due to the ionospheric joule heating as:

Ems (new) = Ems (old) -  IE         
(8b)

where  << 1 is a coefficient representing the joule dissipation.  

We simulated both (A) simple reflection inside the closed field line region ( > 0), and (B) forced dissipating convection with the initial incident wave sinusoidal (E0 sin(2πx/L)) in the 1-D direction as illustrated in Figure 2b. In both cases, the model is linear and non-dispersive for E and I when the conductivity is constant.  The nonlinearity is introduced through the nonlinear enhancement of the conductivity (∆P, ∆H) due to the particle precipitation.  Note that the second case (8a) can also be applied to a gradual increase of the magnetospheric convection, when the magnetosphere launches a series of small increases of the convection electric field before the reflecting wave interferes with the incident wave.  In this case we have to set Ems (and hence E0) to a small value.  

3. Numerical Result

The basic equations (1)-(8) do not contain any integration or derivatives except when deriving the field-aligned current J// from the ionospheric current, and hence the numerical scheme is very simple with almost no numerical diffusion.  The only place that the numerical diffusion comes into the system is through the conductivity enhancement via equation (5).  Since the model is a positive feedback system which is sensitive to the conductivity gradient, a diffusion-free numerical scheme automatically means a strong feedback instability.  However, all physical quantities are large-scale ones, and that means that we have ignored the spatial mixing due to small-scale effects (e.g., kinetic effect and non-ideal wave form) for every reflection.  Such mixing is the only mechanism that stabilizes the system which is gradient-sensitive.  Although we do not know the proper mixing length , let us take it to be /L = 4% (running average over this length) of the scale length for currents and the ionospheric electric field (2/L = 8% for the conductivity) which means  = 40km (2 = 80km) when L = 1000km.  The effect of variable mixing length will be discussed later.

Equation (1)-(8) contains seven independent dimension-free parameters: H/P, 0/A, Jthres/Jsatur, JsaturL/(AE0), /A2, , and AE0.  Therefore one can tune the parameters to get the desirable coincidental result.  To avoid such flaws, we run the simulation for ranges of values for all parameters as summarized in Table 1, and pick up only the common qualitative feature that is reproduced for all ranges listed in Table 1.  The center value corresponds to the physical parameters of: L=1000km, VA = 1200 km/s (or A = 0.67 mho), H/P = 0.5, Jsatur = 1.5 A/km2, Jthres = 0.1 Jsatur,  = 80,  = +0.7,  = 0.03 m/A, and E0 = 0.1 V/m.  The simulation is made for three different ionospheric background conductivities: 0/A = 1, 5, and 25 because our purpose is to examine the effect of background conductivity on the localization of the field-aligned current.  The parameter ranges in Table 1 corresponds to E0  = 0.05 ~ 0.3 V/m, VA = 1000 ~ 2000 km/s, and L = 500  ~  1500  km.

Table 1.  Range of dimensionless parameters examined in the simulation.

	parameter   
	range

	/L       
	0.01  ~  0.04  ~  0.08

	H/P    
	0.1  ~  0.5  ~  2.5

	0/A     
	1  ~  5  ~  25

	Jthres/Jsatur  
	0.1

	JsaturL/(AE0)
	5  ~  23  ~  (45)

	/A2    
	(30) ~  180  ~  1000

	 > 0    
	0.5  ~  0.7  ~  1.0

	 < 0    
	- 0.5  ~  -1.0

	AE0  
	0.001  ~  0.01  ~  0.05


Figure 3 shows the simulation result after the 1st, 4th, 13th, and 28th bounces of the Alfvén wave for different conductivities.  Figure 3a shows the results for simple reflection in the magnetosphere, and Figure 3b shows the results for dissipating forced convection in the magnetosphere (cases (A) and (B) in section 2.4, respectively).  In both figures, one can easily recognize that the field-aligned current is more localized for low background conductivity (0/A = 1) than for high background conductivity (0/A = 25) although the ionospheric current intensity is always lower for low background conductivity than for high background conductivity. Concentration of the field-aligned current is obtained for all the parameter sets within realistic ranges so far simulated (summarized in Table 1) as long as the field-aligned current density exceeds the threshold value to switch on the sufficient conductivity enhancement, i.e., as long as the normalized saturation value JsaturL/(AE0) is smaller than a certain value and the normalized coefficient for the conductivity enhancement /A2 exceeds a certain value (for the nominal set of the parameters, these certain values are written inside the parenthesis in Table 1).    Hence, this concentration is the common qualitative nature with the present model.  

In Figure 3a, even the peak density of the field-aligned current is the highest for the lowest background conductivity.  Such extreme cases are found in case (A) for certain ranges of parameters.  However, this type of simplified simulation may not be used to test anything quantitative (e.g. development of discrete aurora), and we may just mention that field-aligned current density can be higher for the lower background conductivity for certain conditions. 

As a result of the concentration, the peak field-aligned current density is nearly always larger for the lower background conductivity if the total ionospheric currents are the same magnitude, i.e., if the ground magnetic disturbances are the same level.  In other words, we should be able to see more intense aurora during winter than summer if the level of the geomagnetic activity is the same.  This prediction must be examined in the future observations.

4. Problem and Limitation

Any linear wave reflection model means that the transferred energy (IE) at each reflection is highest when the impedance between the wave and the ionosphere matches (P = A).  Therefore, lower P gives higher energy transfer (or E) as long as P > A, which is the real ionospheric case.   In fact Figure 3 clearly shows that the transferred electric field is nearly counter-proportional to the background conductivity.  However, previous observations show that large-scale energy transfer (or cross-polar cap potential drop) is larger in the summer hemisphere than in the winter hemisphere [e.g., Fujii et al., 1981; Yamauchi and Araki, 1989; Lu et al., 1994].  The author simply does not know how to solve this discrepancy.  One possibility is that observation is on a long time scale whereas the model is for a short time scale (this particularly applies to the second model of the magnetospheric reflection (B)).

Since the model predicts the feedback instability due to the conductivity gradient, we cannot eliminate the instability by simply reducing the grid size (or increasing the number of grids N).  We therefore need artificial averaging for stability.  Figure 4 shows the results for different mixing length /L (taking a running average).  A smaller mixing length makes a more localized and spiky profile in the field-aligned current distribution.  The problem is that we do not know the correct mixing size for the reality.  One can only tell that the localization takes place for all parameters, but not how.

Conditions for a strong concentration of the field-aligned current varies in a complicated way with many factors such as: mixing width (or /L); the relation or formula that calculated the conductivity enhancement from the field-aligned current intensity (including parameters JsaturL/AE0, Jthres /Jsatur, and /A2); amplitude profile of the initial Alfvén wave; the reflection at the magnetosphere including parameters  and AE0; the background conductivity (0/A and H/P); and most likely its spatial gradient.  With so many controlling factors, the intensity of the ionospheric current (or geomagnetic disturbances) and the field-aligned current density have a very weak direct correlation as is observed.

The model is only one-dimensional (∂/∂y = 0).  In 1-D, the Maxwell equation system is over-determined, and hence the z component of Faraday's law is ignored.  Modulation of the source convection in EY direction is also ignored.  The field-aligned potential drop, which is assumed to be proportional to the field-aligned current according to Knight's law, is also assumed not to directly affect the ionospheric electric potential (or electric field).  This is also the limitation in the plane wave model.  The present result is valid only within this limitation.

5. Conclusions

A simple one-dimensional numerical simulation is performed on the bouncing plane MHD Alfvén waves between the ionosphere and the magnetosphere.  The model is linear in the electric field during the wave reflection at both ionosphere and magnetosphere, and non-linear for the conductivity enhancement by the field-aligned current through the precipitation.  Background ionospheric conductivity is assumed to be uniform.  

The simulation confirmed the positive feedback mechanism that localizes the field-aligned current: a localized current system carried by the Alfvén wave makes a localized enhancement of the ionospheric conductivity, and this localized high-conductance region causes further localization of the ionospheric current and its divergence (field-aligned current).  The simulation also confirmed that this feedback is stronger when the ionospheric background conductivity is lower because the degree of the conductivity enhancement (or gradient of conductivity) is higher in this case.  This result agrees with the finding of Newell and Meng [1996].  

The number of localized peaks in the simulated field-aligned current is very sensitive to the mixing length (/L).  Since this mixing length is determined by the small-scale physics, the model suggests that the small-scale physics such as the kinetic effect strongly affects the large-scale magnetosphere-ionosphere interaction.

Simulation also showed that the peak density of the field-aligned current is mostly higher for the same intensity of the ionospheric current when the background conductivity is lower.  This indicates that the field-aligned potential drop is larger for the lower background conductivity if the amplitude of the geomagnetic disturbance is the same and the background conductivity is almost uniform.  This prediction needs to be examined in the future observations.

Acknowledgements: The source code of this simulation is found at http://www.irf.se/~yamau/manual/yamauchi0410.m, in which all the quantities are normalized.  The author thanks B. Lysak for useful discussions.
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Figure captions

Figure 1: Time-sequence illustration of the positive feedback between the field-aligned current enhancement and the conductivity enhancement.  The solid arrows represent the current system while the empty arrows represent the electric field.  The thickness of the gray area represents the conductivity value.

Figure 2: Illustration of the plane MHD Alfvén waves injecting to the ionosphere.  The z direction is the magnetic field direction, the gray wide arrows represent the wave propagation direction, the empty arrows represent the electric field, and the invisible arrows  in the perpendicular direction to the paper represent the deviation magnetic fields.  (a) The field configuration of the injecting wave, reflecting waves, and the ionosphere during one reflection.  (b) The incident field amplitude profile in the x direction.

Figure 3: Simulation results of the normalized ionospheric electric field (E/E0), normalized ionospheric current (IX/AE0), normalized Pedersen conductivity (P/A), and normalized field-aligned current (J//L/AE0) after the 1st, 4th, 13th, and 28th bounces of the Alfvén wave.  The horizontal axis is along the ionosphere ( direction) with the grid size N=1000. The background conductivity is the variable parameter, and left column: 0/A = 1; middle column: 0/A = 5, right column: 0/A = 25.  The other parameters are /L  = 4%, H/P = 0.5, JsaturL/(AE0) = 23, Jthres /Jsatur = 0.1, /A2  = 180, AE0 = 0.01, and  = 0.7.   Simulation is made for different models of the magnetospheric reflection: (a) simple reflection in the magnetosphere, and (b) forced convection with dissipation in the magnetosphere (cases (A) and (B) in section 2.4).

Figure 4: Same as Figure 3 except that the artificial mixing length is varied (/L = 2%, 4%, and 8%) instead of the background ionospheric conductivity (which is set 0/A = 1). 


