Adaptive Wavelet Methods for Hyperbolic
PDEs

Mats Holmstrom* Johan Waldén*!

Abstract

We analyze how to solve hyperbolic PDEs with compactly supported or-
thonormal wavelets adaptively. We use thresholded wavelet expansions of sig-
nals and operators. A tree structure is used to represent the signal, and a
multi-dimensional analogue of the fast wavelet transform is used to expand
the operators. We solve the advection equation and Burgers’ equation on a
periodic domain.

Key words. wavelets, adaptive PDE methods, hyperbolic equations, numeri-
cal algorithms

AMS subject classifications. 65D25, 65M50, 65M60

1 Introduction

When using wavelets for solving partial differential equations (PDEs), there are two
main approaches. With the first approach, the PDE is solved with a standard method,
and wavelets are used to analyze the “local frequency contents” of the signal (see, e.g.
B. L. Bihari and A. Harten [8]). With the second, “pure” approach, wavelets are used
to actually solve the PDE, i.e., the operators of the equation are approximated in
wavelet bases. This can for example be done with a collocation method as proposed
by S. Bertoluzza and G. Naldi [4], or with a Galerkin method see; e.g. P. Fisher and
M. Defranceschi [11]. For elliptic PDEs there are diagonal preconditioners that give
slowly increasing or bounded condition numbers for the system of linear equations
that arise when the PDE is discretized. This system can then be solved by an iterative
method.

The literature on pure wavelet methods for hyperbolic PDEs is sparse. One idea
for how wavelet methods might be efficient for hyperbolic PDEs is that a function that
is smooth, except for some isolated shocks, can be approximated with few coefficients

*Uppsala University, Department of Scientific Computing, P.O. Box 120, S-751 04 Uppsala,
Sweden.

TResearch supported by the Swedish Natural Science Research Council, NFR, under grant F-FU
04370-304.

2 JOHAN WALDEN

in the wavelet domain. This could be used to construct an adaptive method with a
non-uniform grid.

Here, two different approaches are applicable. One can choose an approach similar
to what is done when using pseudo-spectral methods, i.e., to use both the physical
representation of the signal, and the wavelet representation, e.g., doing multiplication
in the physical space, and differentiation in the wavelet space; see for example J.
Keiser [14]. With this approach one transforms back and forth between the physical
domain and the wavelet domain in each time step, which introduces some problems
as a representation, sparse in one of the domains, may be non-sparse in the other.

We choose the second approach, i.e., to do all the computations in the wavelet
domain, and only transform back and forth once between the domains. This has
been done by E. Bacry et al., in [3] with focus on how to do time-stepping. We use a
Galerkin method for discretization. Analogously to the signal, the operators can be
approximated by sparse operators in the wavelet domain, which will give an overall
fast way of solving the problem. We use an explicit time-marching scheme, and solve
the advection equation and Burgers’ equation, on a periodic domain.

In Section 2 we introduce some notation, and review wavelet theory. In Section 3
we describe how to obtain quadrature formulae for inner products. We introduce
sparse signals and operators, and describe how to periodize these. Furthermore, we
describe the data structures involved in the PDE solver. Finally, in Section 4 we
solve the advection equation with different wavelets, and Burgers’ equation. We also
discuss generalizations to PDEs in more than one dimension.

2 Preliminaries

We use the Hilbert spaces L?(R) and L*(0,1) with the inner products
(frghn= [fade, (1)
1
(f.9)om = | Foda. (2)

The following notation will be used: Thin letters correspond to scalars (a, A,).
Boldface upper case letters correspond to matrices (A, B) and boldface lower case
letters to vectors (a, b). The scalar on the ¢th row and in the jth column of a matrix,
A, will be denoted (A);;, and the sub-matrix consisting of elements from row ry
to ry and column ¢; to ¢z, we denote (A),, .1, c1:c,- The same notation will be used
for vectors. Scalar operations on vectors are to be thought of as element-wise, e.g.,
23 = (201 200>) max(j, k) = (max((j)1, (k)1), max((j)z, (k)2),...). We will also
use element-wise multiplication for vectors, a .x b = ((a);(b)1, (a)2(b)s,...). Special
vectors are 1 = (1,1,1,...), 0 = (0,0,0,...) and &;, (&;); = 1,(6:)jz = 0. The
transpose of a matrix (vector) is written AZ. Arbitrary multi-dimensional indexed
sets will be denoted by upper case Greek letters, (I',Q?). We will skip ranges in
sums and integrals when obvious. Throughout the paper we will assume that we are
working with real-valued wavelets.

PAPER III 3

A useful way to approach wavelet analysis is through a so called multiresolution
analysis (MRA) which was introduced by S. Mallat, [15]. An MRA consists of a

sequence of closed subspaces, V;, such that

e CVacVacWhacviclaCnn, (3)
Jvi = =), ()
JEL
NV = o,)
JEL
[eV;e [(27) e, (6)
feVoe f(-—k) e, (7)
Jdp : {e(- — k) }x is an orthonormal basis of Vj. (8)

We denote the orthogonal complement of V; in V41 by W,

Vi =V W, (9)

With this construction we get

plx) = V2 hpp(2z — k), (10)

where (8) ensures that

zkj|hk|2 = 1. (11)

By defining
¥(z) = V23 grp(22 — k), (12)
k

where g, = (—1)¥h;_i, we get an orthonormal basis of L?(R), i.e., if we put
Vik(e) = 272 (2x — k), (13)

pin(e) = 2/0(2x — k), (14)
we have
(Yik, Yim) = 616km, (15)
span({tjk i) = L*(I). (16)
To get good approximation properties, we furthermore require the wavelets to
have a number of vanishing moments, i.e.,

/x”@b(x)d:c:(), n=0,...,N—1. (17)

The scaling functions which give wavelets with the shortest support compared to
their number of vanishing moments are the Daubechies scaling functions, Doy, with
N vanishing moments and a support of [0,2N — 1].

4 JOHAN WALDEN

We denote the orthogonal projection onto V,, by E,, and by @), the projection
onto W,,. It is a well-known fact, carrying back to [12], that for compactly supported
wavelets (17) implies that

1E;f = fll. = O(27™). (18)

Eq. (17) also is a necessary condition if we require some regularity of 1; v» € CV =
[a™p(z)de =0, n=0,...,N.

One way to periodize wavelets is to use the following definitions

@) = Sente +1), (19)

i (@) =D tir(z +1), (20)
]
generating the spaces
Vjper = Span({S‘Q?Ijr('r)}kzo,...,w—l)a (21)

ijer = Span({Ip?;r(x)}k:o,...,w—l)- (22)

This construction gives an MRA of L*(0,1) with the coarsest level V; as V; =
span({1}) for j < 0. In analogy with the non-periodic case we define the pro-
jection operators EP® P, Throughout the paper, we will use the non-periodic
wavelets for analysis, whereas for numerical results, we use the periodized wavelets.
The modifications needed are treated in Section 3.6.

The fast wavelet transform (FWT) is the corner stone for wavelets being so useful
in numerical analysis. If we, for a function f € L?(R), make the following definitions

sik = (f,ik) (23)

die = (f,¥jn), (24)

the projection operators can be written

E;f= ESj,k%,k = (Sj)T(i’j)a (25)
k

Qif = dixtbjp = (d/)"(W). (26)

The FWT provides an O(N) algorithm (where N = 2", is the number of elements in
s”") to go between s; s and d;xs. From (10), (12) we get

Sjcik = D hm—2kSjm, (27)

m

dj—l,k = ng—Qij,ma (28)

PAPER III H

Sn sn—l Sn—2 . sng—l—? Sno—l—l
\ \ \ \ |
dn-1 dn-2 e drot drot

Figure 1: The pyramid fast wavelet transform.

and repeating this will give the fast “pyramid” scheme for computing the wavelet
representation of £,

En = Qn—l + Qn—2 + Qn—?) +...+ Qno-l-l + Eno-l-l' (29)

The idea is shown if Figure 1.
With the notation

t]'JC = d]'7k, j:no—l—l,...,n—l,

tno,k Sno-l—l,k) (30)

Ajig = Yik, J=mnotl,...,n—1,
)\novk = Pro+1,ks (31)

the decomposition, (29), can simply be written
n—1
Enf = Z th,k)\j,k- (32)
j:no kc7

In the same manner we can define A7y and 77
, k)

3 Theory

3.1 Quadrature

To project a function, f, onto a scaling function space, V;, we need a way to compute
the scaling coeflicients, s; ;. The wavelet coefficients can then be computed with the
FWT. Since functions often are given as equi-spaced point values, we would like a way
to compute scaling coefficients from point values, and also to compute the reverse,
point values from scaling coefficients. This section presents quadrature formulae to
accomplish this.

As before, we express the projection of a function f, onto the space V; as,

E;if(z) = %:Sj,kw,k(fﬂ) =Y (frpir)eir(z). (33)

k

Given equi-spaced samples of f, f(¢h),7 € Z, h = 277 on the real line, we approximate
the scaling coefficients by finding weights, wy, such that

sik =y wef(277(j + k) + O(R"), (34)

6 JOHAN WALDEN

where p is the order of the approximation. Since g, is a scaled and translated version
of ¢, we can, without loss of generality, examine the case

so0= [fl@)e(x)de. (35)
If we use the Trapezoidal rule to approximate this integral we get

50,0 ~ Xk: c,o(k)f(k), (36)

i.e., the weights w, = ¢(k). In general the Trapezoidal rule is a second order approx-
imation (p = 2 in (34)), but as shown by Sweldens and Piessens [16], for a wavelet
with N vanishing moments, defined by (17), the Trapezoidal rule is an approxima-
tion of order N. We then have a quadrature formula that is of the same order as
the function approximation itself, since by (18) the approximation error for a wavelet
with N vanishing moments is of order N.
If we restrict our attention to compactly supported scaling functions, with

suppp(z) = [0,2m — 1] and N vanishing moments, the Trapezoidal rule leads to the

approximation
2m—2

s = 2SS @14 R) + O(RY), "
=1
as a solution to the original problem (34), where we have used the dilation equation
(14). This is not optimal in the sense that we must use 2m — 2 function values to
compute one scaling coefficient for a wavelet with N vanishing moments. In most
cases 2m — 2 > N (e.g, for Daubechies wavelets m = N) and in [16] it is shown that
there always are weights such that we can get an approximation of order N, using
at most V + 1 function values. Still we choose to use the Trapezoidal rule due to its
simplicity.
We solve the inverse problem of recovering the sampled function values, f(2771),
from the scaling coefficients s;; by sampling the projection of f, i.e., we compute

-1

FRI R~ B =9 Y sl h). (38)

k=l—-2m

The remaining problem is to find the values of the scaling functions at the integers.
Using the scaling equation (10) for ¢, we get the 2m — 2 by 2m — 2 system of linear
equations

la
(k)= hp(2k —1), 1<k<2m-—2, (39)

=l
where [; = max(0,2k — 2m + 2) and l; = min(2m — 1,2k — 1). Since this is a
homogeneous system of equations, we exchange one of the above equations with the

normalization equation
2m—2

> k) = 1, (10)

PaPER III 7

so that the system of equations has a unique solution.
Numerical experiments suggest that this system of equations, at least for Daubechies
wavelets, can be solved in a few fixed point iterations

la
et k) =D e (2k — 1), 1<k<2m-—2,
=h 2m—1
P Em—2)=1- 3 "), n=0,1,2,..., (41)
=1
1
N = —— 1 <1< 2m —2.

Here ¢"(1) is the approximation of ¢(l) after n fixed point iterations.

3.2 Sparse representation of functions in a wavelet basis

Functions which are smooth, except for in localized regions, can be efficiently rep-
resented in a wavelet basis up to any given accuracy e. Such functions appear for
example in acoustic problems, where we can have a low-frequency wave, with a local-
ized high-frequency burst. Another example is in fluid dynamics, where the solution
can be smooth except for in regions with shocks or discontinuities.

Assume that we project a function, f(z), onto the space V,,, and perform the
wavelet transform. We then have an expansion

E.f(z) = Zk:SnoH,wnoH,k(fﬁ)Jr Yo dutu(x) = D tipdie(a). (42)

no+1<5<n,k ng<j<n,k

To get a sparse representation we remove all wavelet coefficients with absolute value
less than some threshold value €. Then we have the thresholded expansion

Bl = f()= 3 tuda) (13)

The set I7 of retained coefficients is defined by
I =140, k) i no <5 <, [tjs] > €} (44)

We will denote the number of retained coefficients by N;. The total number of
coefficients is N. To illustrate this thresholding we choose a 1-periodic function

f(x) = sin(2m2) + gyl(a), (15)

that is smooth in most of the domain except near * = 0.5 where we have a “spike.”
Here ¢,() is a periodized Gaussian, centered at x = 0.5, of height 1, defined by

gplx) =Y gla—k), gla)=e Pt/ (46)

kEL

and 3 is a parameter that controls the width of the Gaussian. A plot of Ef f(x) is
shown in Figure 2, where we have chosen the threshold value as large as e = 0.1 in
order to get a visually perceptible error.

8 JOHAN WALDEN

15

_1'5 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 2: A plot of the truncated wavelet expansion Ef, f(z), for f(z) defined in (45), with
B = 20000. The wavelet basis is that of Daubechies with six vanishing moments, Dy5. The
threshold is € = 0.1, which leads to 12 retained coefficients, out of the original 2!, in If,.

3.3 Sparse operators

There are several ways of making a wavelet approximation of an operator, 7' :
(LQ)N — L*, e.g., by a collocation method [4], or a Galerkin method [11, 14]. We
will use a Galerkin method to define the approximating operators by

T,: VN =V, (47)
where
Tn2(fl,...,fN)I—>EnT(f1,...,fN), fiEVn,izl,...,N. (48)

If T"is an N-linear operator, i.e., if

T(fi,...,ac(x)+b8(x),..., fn)

=al(fr,...,a(x),....fn)+ 0T (fr,....08(x),..., fn), (49)

then we define
D5k = (T(G).®)10 1 P x) PG wsn (K wss) (50)
Uik = (T (PG s VG w0) P s, s) (51)

and, more generally

. — 1 N+1 ¢
O5N = (T (V50,001 > V) s 0n) Vi was, (K s) (52)

PAPER III 9

where j € zN*t! k € zN+1, N € {0, 1}V+L, ’yjk = ¢, if (N); =1 and 7;k =t if
(N); =0.

We want a representation of the operator that takes advantage of the sparse
representation we have of the functions. Therefore, we should not use the FWT
as the function has a non-sparse representation in the space of scaling functions.
Thus, operations that are simple in the physical domain (such as multiplication) will
require some work in the sparse wavelet domain. This means that we should view
the operator in accordance with the decomposition (29). We define the function, M,

M(-]) = 17 j:nOJ

and the vector M(j),
M(j) = (M((4)1), M((3)2); -, M(()n+1))- (54)

This gives us the following formula for an N-linear operator using the expansion (32),

Ji =225k U a ik

N
To(fiso o fn) = D0 (TG00 @54 ME) MGG st (0 a1

jeJ keK i=1
J={ng,...,n — 1}V K =zN*1, (55)

Equation (55) includes a lot of cross terms, which seems to make it numerically
costly, even if we have sparse representations of our functions. To make it numerically
efficient we will have to exclude some of the terms. One way of doing this, which
we will not consider, is to combine the pyramid scheme with the ©;y ns to get the
so called non-standard form of the operator, which will be banded [7]. Another way
is to ignore the “small” coefficients in the operator, (which hopefully are many) and
make an approximation of the (already approximated) operator. As we will be using
explicit time-marching schemes, with operators which are typically differentiation and
multiplication, the operator coefficients will vanish for wavelets that are far apart, i.e.,
with non-overlapping support. The decay between different scales will also be fast.
We refer to [17] for results on this, where orthonormal wavelets with better decay
between different scales are constructed. If one leaves the setting of orthonormal
compactly supported wavelets, there are results that imply that spline wavelets are
a good choice [6]. We will use orthonormal, compactly supported wavelets.

With this in mind we, in analogy with the truncation of the function, define
a truncated operator, T, which performs the same as (55), but only for ©s with
absolute values larger than e. In analogy with the function representation, we define
the set I} by

I7 = {(J, k) : 1O5:Mm() M) > 6 € J, ke K} (56)

The truncated operator, T, is now defined as

N
Tilfis e fn) = D2 (T1 60000, @5+ MG) X MEAG) 41,6 w41 (57)
(dkjelz =1

10 JOHAN WALDEN

Finally, we would like to apply this operator to truncated functions, and with the
notation

]JE‘ = {(.] k) : ((J)H(k)l) € I:L(fl)a i=1,...,N,
(j)N+1 € {no,...,n — 1}, k)N—H € Z}, (58)

we get

N
Tifis o dn) = >0 (TG00 OieMG) kMG AG) 1 (K) s (59)

(kergnis i=1

To get the O coefficients one can of course do numerical approximations of the
integrals, but following [5] we use (10), (12) to get a recursive relationship between the
coefficients. We shall study operators that, apart from being linear, satisty dilation
and translation invariance, i.e.,

(T(A(e) o Iu(@)E) = @i o)
(T(A(- = @)oo Sl = a)(@) = (T(fay-os)z —)

We call such operators LDT (Linear Dilation Translation invariant) operators. We
define the generalized N-dimensional autocorrelation and convolution by

(hol Dk = 3 BTk (1) (k) 4r)5o s (61)

hE D = 3 T ko, (62)

where I" is any N-dimensional indexed set. We define

F(s,t) = 1, s> 1,
F(s,t) = 2, s <,
F(s,t) = (F((s)1,(t)), .., F((s)n, (t)n)). (63)

We then have the recursive formulae

17N —_— N
QJt = O 7
i, N _ gmax((Dnp1=Me0) N B
0 = h OSvF((J)N+17(J)s) 0 ’ s = 17 EEEREAR
.) 1
Qj—éS,N—fSS _ gmax((J) Ny 41—(J)s,0) Q.LN7 s =1 N (6)

= g Os,F((j)N+17(j)S)

H max j SN — j 1 0) .
j—6ny11, N _ 2 -((.])1.1\-7 PDr41ls i, N
L h >kF((.1)1:1\77(.])1\7+11) 0

1 max((J N — j 10) .
J—6n+1,N—b6n11 — 9 ‘((.])LJ\{ Dr+159 i N
& 9 *F((J)1:N7(J)N+11) 0

PAPER III 11

and we have
j7N

gmax((Dn411-W1n0) o (k) y—2max(@1v-Dn411.0)) (65)

Oj kN =
N1l

Here, each € is an N-dimensional indexed set, and j € z¥*!, N € {0,1}+!. This
gives us a way to construct every © from the coefficients ©¢ i o. The transformations
become an N-dimensional version of the pyramid algorithm. This is shown in Fig-
ure 3. As o}, *Jt, are commutative, it is irrelevant in which order these operations are
applied and this reduces the number of arrows in the figure. If the operator satisfies
some symmetry property one can further reduce the number of coefficients required.

Example 1 The differential operator, -2 -, is an LDT-operator with dilation factor,
v = 27, represented in the following way for j; > jo

@ ?;177]1622))() <S‘Q§:7)k1 ? S‘Qj27k2> Z/(jl ~52) (Q(h B 70)7(171))2”_]2 k1—ka>»

(
(
62;117,]1622))(V= <90]1,k17 ¢]27k2> = (]1 _JQ)(Q(D N 70)7(170))2”_]2 ky—ko>
O i)™ = (ks i) = VT QU OOy
ON ™ = (Wl i) = VOB QUTIOON) (66)
For the cases where j; < j; we can use the symmetry property

j1,42),(N1,N2 r(y(32,1),(N2,N1

iy = ey,
which allows us to only compute half of the coefficients. The truncated differential
operator for a function, f* =37 nere tjrAjk, is defined by

DT (fe) = > iy s © Gy o)+ (M (1), M (G2), (k2) (M (1) oM () N ko - (67)

(41,d2,k1,k2)€TFNIE

The reduced fast operator transform for the differential operator is shown in Figure 4.

Example 2 The multiplication operator is an LDT-operator with two-dimensional
Qs and v = v/2. There are eight equations corresponding to (66). The operator has
the symmetry property
Q(j171'27j3)7(N17N27N3) _ QP((JE7j27J'3))7P((N17N27N3))
(k1,k2,k3) — “UP((k1,k2,43)) ’
for any permutation of the indices, P, allowing us to compute only one sixth of the
coefficients. As we only need the coarsest level for the scaling functions the only
@

combinations of s we need are Q‘LM ,J € {no,...,n — 1}>. The reduced operator

transform is shown in Figure 5.

The only task left is finding the coefficients Qﬁ’l. Here we can again use (10) which
will give a system of linear equations. This approach was introduced in [5], where it
was used for finding the coefficients for the differential operator. It can be generalized
to LDT-operators, although the uniqueness of the solution to the resulting system of
equations yet has to be studied.

(17 10] spueys 4 areym) wiojsuely 10yerado jsey prueldd oy [, ¢ 9In3I]

hx

1

(2,1,1,..

)

hil

1 __gn-1om0

(2,1,1,..

)

Qn—ég,l Qn—ég—él,l—él Qn—l—éz,o

g°11

2
go3,

1 g*%

1
h*(1,2,1,...)

n-s 1 n-s —51,1-6
Q N4+1 Q N41 1 ...1

go%,z 9052 g*%

Qn—25N+1,1

4
h*l

Qn—1—5N+1,0

PAPER III

(), (1,1) Q(n—l,n),(o,l) Q(n—l,n—l),(0,0)
goil %3
hoi 4
Q(n—l,n),(l,l) Q(n—2,n),(0,1) Q(n—2,n—1),(0,0)
—_—— —_——
90%,1 %3
h*il
Q(n—E,n),(l,l) Q(n—S,n),(O,l) Q(n—S,n—l),(0,0)
—_—— —_——
90411,1 9%3
ho3 "
Q(ng+1,n),(1,1) Q(ng,n),(o,l) Q(ng,n—l),(o,o)
—_— —_——
gt " %5

Figure 4: The reduced fast operator transform for the differential operator.

13

“10jeIado uwonyedrydynur oY) 10] wiojsuel) 10jeIado 1sB] pednpal oY], G oINSI]

Q(n,n,n),(l,l,l)

Q(n—l,n,n),(l,l,l)

2
hot ;

Q(n—Z,n,n),(l,l,l)

4
9g°11

4
hol 4

Q(n_sanrn)ﬁ(lalrl)z

8
g°11

Q(n—Ln}n)}(O}l}l) Q(n—1>n—1>n),(0>031 Q(n—l,n—l,n—l),(o,o,o)

1,1
gO%,l 9*52,23

Q(n—2,n,n),(0,1,1 Q(n—2,n—1,n),(0,0,1) Q(n—Z,n—l,n—l),(0,0,0)
(1,1)

991 1 9031 9*(2,2)

1
ho271

Q(n—B,n,n),(O,l,l) Q(n—S,n—l,n),(0,0,l) Q(n—S,n—l,n—l),(0,0,0)

11
9% 1 7¥(33)

Q(n—él,n,n),(o,l,l) Q(n—4,n—1,n),(0,0,1) Q(n—4,n—1,n—1),(0,0,0)

1,1
9051 g*glzg

Q(n—l,n—l,n),(l,l,l) Q(n—2,n—1,n)7 0,1,1) Q(n—Z,n—2,n),(0,0,1) Q(n—2,n—2,n—1:
1,1
goil go%,l g*ggygg

2
hot 4

Q(n—Z,n—l,n)7 1,1,1) Q(n—S,n—l,n)7 0,1,1) Q(n—B,n—Z,n), 0,0,1) Q(n—B,n—Zn—lj

1,1
9011 9031 9*52,23

PAPER III 15

3.4 Tree representation

Since we want to use wavelets to obtain sparse representations of functions, we need
a data structure that takes advantage of this sparsity. In this section we will describe
such a sparse data structure.

When implementing algorithms that involve thresholded wavelet expansions, such
as F¢ f(x), defined by Equation (43), we need an efficient representation of this sparse
data structure. There are several criteria that such a data structure has to meet. It
must be memory efficient and it must also permit fast evaluation of operations on the
thresholded wavelet expansion, such as addition, multiplication and differentiation.

We propose a tree structure for the representation of thresholded wavelet expan-
sions. The tree is a binary tree with added pointers to parents and nearest neighbors.
Each node is a block of consecutive wavelet coefficients. The number of coefficients
in each block is denoted n;, and must be an even power of two. An example of such
a tree is presented in Figure 6.

np

-<-—-- =

Figure 6: Schematic picture of the block tree.

We now define the mapping of the thresholded wavelet expansion on the tree
more precisely. We have the same pyramid structure as for the ordinary wavelet
expansion of a function (42), except that we now have blocks of coefficients instead
of single coefficients. The scaling coefficients are stored in a block (sgsy -+ - S5, —1) and
the wavelet coefficients are stored in blocks (d; kn,) kny+1 * * * dj kny +ny—1), Where the
index j is the level as before but k,0 < k <2/ — 1, is now the block index. Since we
now are dealing with blocks of coefficients, we also have to redefine the set 7. Instead
of retaining single coefficients after thresholding, we retain whole blocks. There are
several norms that we can use for this block thresholding. One is that we retain all
blocks that have at least one coefficient with magnitude greater than the threshold
value, ¢. Another strategy would be to calculate the [* norm, Ed?k, of each block.
An example of a tree after thresholding is shown in Figure 7.

The binary tree representation is natural for wavelets with a dilation factor of
two since the number of wavelet coefficients doubles at each level. Also, blocks on
the same level that are adjacent in space are neighbors in the tree. Between levels,
the wavelet coefficients in a parent block have approximately the same support as its

16 JOHAN WALDEN

Figure 7: Schematic picture of a thresholded block tree.

children.

The reason behind choosing a block representation is to spread the the cost of
memory management and pointer references over ny, wavelet coefficients. The number
of wavelet coefficients in each block, ny,, has to be chosen with two competing aims
in mind. If on one hand ny, is small we can get a sparser tree (the total number of
coefficients after thresholding is small), but on the other hand if ny, is large we get
less overhead.

3.5 Operations on trees

In this section we will briefly describe the algorithms for performing operations such
as addition, differentiation and multiplication of the sparse trees described in the
previous section.

First of all, some generalities that hold true for all tree operations. The result tree
is built from the root and downwards computing one block at a time. When a block
norm is smaller than the threshold value we do not compute any blocks in the subtree
of that block. This can be justified by the fact that for functions with no worse sin-
gularities than discontinuities, the wavelet coefficients decrease asymptotically when
the level, j, increases.

3.5.1 Addition

Since the addition of two wavelet expansions simply amounts to addition of wavelet
coefficients with equal index, we build the result tree, including all blocks that are
non-zero in either one of the operand trees. This is an O(N;) operation.

3.5.2 Differentiation

To compute the coefficients in a block in the result tree, we iterate over the block’s
neighbors in the original tree. This is an O(cq/N;) operation, where ¢4 depends on
the wavelet we use and the precision we want.

PaPER III 17

3.5.3 Multiplication

We proceed as in the case of differentiation, except that we now have two trees, which
amounts to an extra inner loop in the calculations. This is an O(¢y,N2) operation,
where ¢, again depends on the wavelet we use and the precision we want.

3.6 Periodization

There are several approaches for constructing wavelets on the interval, see e.g. L. An-
dersson et al. [1], or P. Auscher [2]. We choose the simplest, to work Wlth periodized
wavelets. Some slight modifications have to be made when working on a periodic
domain. For the signal, this means that

= (A 00 th k204 M(5) |- (68)

We know that |suppy; x| = 277 (m — 1), where m is the number of non-zero h coef-
ficients. This means that for a choice of, ny such that 270*! 4+ 1 > m, the pyramid
algorithm can be modified, simply by treating the filters, s™*!, d’, as circulant. In
the sparse representation of the signal this carries over to the “circular arrows” at
the edges of each level in Figure 6.

The situation is the same for the operator. The new coefficients will be defined

as
firN = Z ®_] k+(20)1 (1)1,2002 (2)2,... 2008 (1) 5, (K) w41), N
rezN

JENN+1 N e {0, 1}V

(k); € {0,...,20 — 1}, 1=1,...,N+ 1.
(69)

For support dependent operators, i.e, operators with O n = 0 if |supp’y(J) (a0, N

SUPPY (). (k). | = 0 for some [, s, we can use circulant versions of the N- dimensional au-
tocorrelation and convolution, o]’per *‘{’per as long as 20i-1 41 > m,i=1,...,N+ 1.
The recursive formulae, (64) are exactly the same but with the operations, o]’per *‘% per,

4 Numerical results

In this section we solve two one-dimensional PDEs with periodic boundary conditions;
the linear advection equation and the non-linear Burgers’ equation. For time-stepping
we use an explicit 4th order Runge-Kutta scheme. We also discuss the number of
arithmetic operations (a.0.) needed for differentiation and multiplication in a wavelet
basis.

18 JOHAN WALDEN

4.1 Adaptive time-steps

Since the size of the time-step, At, is restricted by the number of levels in the wavelet
expansion, i.e., the mesh size on the finest level, we choose a time-step that is depen-
dent of the number of levels in the wavelet expansion at each time. This is done by
doubling At when the solution tree shrinks by one level, and by halving At when the
solution tree grows by one level.

4.2 The advection equation

We want to solve

U = Uy, 0<z<1, t>0,
{ w=u(z, 1), u(0,1) = u(l,). (70)

The solution is a translation of the initial condition, u(x,t) = f((x +¢) mod 1). We
choose an initial condition f(x), that is smooth in most of the domain except near
x = 0.5 where we have a “spike.” This initial function is a sum of a sine wave
and a Gaussian as described in Section 3.2. The thresholded wavelet expansion of
the solution u(z,t), will have few coefficients, except for in the neighborhood of the
“spike” at x = 0.5 — ¢.

In our first example we chose a spike with an effective width of 3 x 1072, The
initial function is shown in Figure 8. We stepped forward to t = 0.3, where the
solution looks like in Figure 9. Too see the effects of the thresholding we chose large
threshold values. The problem was solved with the Daubechies wavelet, Dg, with
|suppe| = 7, and four vanishing moments. The time-step was chosen as At = 1 x 1072
to ensure stability. The threshold for the blocks was chosen as ¢, = 5 x 107 and the
operator was truncated with €;/4, = 5 X 10~2. The block-size was np = 16 and six
different scales were used in the tree. Furthermore, the number of different scales,
d = Jmax — Jmin, used in 0% was d = 3. The number of blocks in the signal varied
between 4 and 7. The approximated solution at ¢ = 0.3 is shown in Figure 10. We
see here that the error is large around the spike, and that we have some overshoot for
the spike. The L? norm of the exact solution is 0.717168 and for the approximated
solution it is 0.716673. For larger thresholds, the norm of the approximated solution
decreases, which is natural as energy is lost when doing the thresholding.

We next considered a “nastier” problem, with an effective spike width of 5 x 1073,
The initial function is shown in Figure 11. We stepped forward to ¢t = 0.3, where
the solution looks like in Figure 12. Once again, we used the Daubechies wavelet,
Dg. The time-step was chosen as At = 1 x 107*. The threshold for the blocks was
chosen as ¢, = 1 x 107® and the operator was truncated with €djdz = 1 X 10=7. The
block-size was chosen as np, = 16. To resolve the spike, nine scales were needed,
and this number was chosen automatically by the thresholding procedure described
earlier. The error of the approximated solution at ¢ = 0.3 is shown in Figure 13.
We see here that with these values for the thresholding, the error is small. It is also
worth noticing that the thresholding makes the error stay localized near the spike.
This nice property was observed for all the experiments.

PAPER III

Figure 8: Initial function for advection equation, u; = u,, spike width 3 x 1072,

Figure 9: Solution for advection equation, t = 0.3, spike width 3 x 1072,

19

20

JOHAN WALDEN

Figure 10: Approximated solution for advection equation, t = 0.3.

0.5

_0.5 L

Figure 11: Initial function for advection

equation, u; = u,, spike width 5 x 1072,

PAPER III

0.5

_0.5 L

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 13: Error in approximated solution with Dg for advection equation, t = 0.3.

22 JOHAN WALDEN

The number of blocks in the signal varied between 19 and 27. The bottle-neck
when using this wavelet was d. In the previous example eight levels were needed for
the method to be numerically stable. An example where the number was reduced to
six 1s shown in Figure 14, after only five time-steps. The same happened with seven
levels, but not as quickly. By increasing the length of the support of the wavelets d

-4

x 10
15 T T T T T T T T T

_1'57 -

_2 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Figure 14: Error in approximated solution after five time steps with jmax — Jjmin = 6.

can be decreased. If we choose the Daubechies scaling function, Dyg, it is enough to
choose d = 5. The error in the approximated solution at ¢ = 0.3 with e, = 1 x 1072,
€djdz = 1 X 107 and At = 1 x 107* is shown in Figure 15. The number of blocks
used to represent the signal decreases to 10-14.

The number can further be decreased by using the wavelets proposed for hyper-
bolic PDEs in [17]. We use the scaling function WQ%’Q) (corresponding to a wavelet
with the same filter length as Djg, but with four less vanishing moments). For the
problem with the same data, e, = 1 x 107%, €574, = 1 x 1077 and At =1 x 107, it
is enough to have d = 3 to represent the differential operator. The error in this case
is shown in Figure 16. The number of blocks varies between 10 and 15. The error
in L? and L* norm for the three wavelets is shown in Table 1. We see here that the

errors for the different wavelets are approximately the same, in both norms.

PAPER III

x 10

Figure 15: Error in approximated solution for Dyg at t = 0.3.

x 10

0.1

0.2

0.3

0.4

0.6

0.7

0.8

0.9

Figure 16: Error in approximated solution for

0.1

0.2

0.3

0.4

0.5
Zz

0.6

0.7

(27

2
W20)

0.8

0.9

att = 0.3.

23

24 JOHAN WALDEN

Scaling function | |le]|zz x 107* | |[e|[rs x 1072
Dg 1.6017 4.7733
Doy 1.5206 4.6442
wiz? 1.5423 4.6441

Table 1: Error with different wavelets for advection equation, u; = u,, with eflective spike
width 5 x 1072, at t = 0.3.

4.3 Burgers’ equation

We want to solve the non-linear equation

{ U + Ul = fUgzy, 0<z<1, t2=> Ovﬂ >0, (71)

u(z,0) = f(z), w=u(z,t), u(0,t)=u(l,t).

The exact solution, given by the Cole-Hopf transformation [9, 13], can for the
case f(x) =sin(27x) be stated as

[sin(27(x — y)) exp [1 (M _ y?)] dy

ap 7r

e [(e B[

u(z,t) = (72)

This solution, for u = 1072, is plotted at different times in Figure 17. We can note
that the initially smooth function has evolved into a sawtooth function at ¢ = 0.3,
with a sharp gradient at * = 0.5. This is another example of a function that is
efficiently represented in a wavelet basis since we will have few wavelet coefficients,
except in the vicinity of = = 0.5.

We now turn to numerical experiments. In Figure 18 we can see what happens
when the resolution is not good enough. The block size ny, = 16, the wavelet is Ds,
At = 5 x 107% and p = 107*. The truncations used are ¢, = 107® and €djdz =
emut = 10712, and the corresponding norm is a block /2.-norm. The dashed line is the
approximated solution at ¢ = 0.14 computed using only one scale (corresponding to
32 points). This is not enough and leads to spurious oscillations around the sharp
gradient. The solid line shows that when we allow the number of scales to increase
to three (128 points), the resolution is sufficient. Note that this increase in scales is
handled automatically by the solver, since we add new levels to the tree when the
coefficients in a block is larger than the threshold.

In Figure 19 we can see a thresholded block representation of the exact solution
at time ¢t = 0.3. At finer levels we only have two blocks around the sharp gradient at
x = 0.5.

In Figure 20 we examine the error after one time-step at ¢ = 0.3. Here At = 1074,
the wavelet is Dg, p = 1072, np, = 16, ¢, = 107° and €d/dz = €mul = 1076. We limit
the interaction between scales to four scales for the multiplication.

PAPER III 25

Figure 17: The exact solution of Burgers’ equation when the initial function f(z) =
sin(2rz), at times { = 0,0.1,0.2,0.3,0.4 and 0.5. The viscosity p = 1075.

15

0.5

_1.5 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 18: Solutions at t = 0.14. The dashed line is the one level approximated solution
and the solid line the three level approximated solution.

26 JOHAN WALDEN

W
We
Wy
Wy
W3
Ws
W,
Wo

Vo

Figure 19: Block representation of the solution at ¢ = 0.3 for p = 107° with €, = 107°.
The wavelet is Dg. The block size ny, = 16, and we have eight levels in the wavelet tree.
This corresponds to 4096 points on the finest level Vg.

_12 | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x

Figure 20: The error of the numerical solution at t = 0.3001 after one time-step of length
At =101 The wavelet is Dg and u = 1073,

PaPER III 27

4.4 Work estimates

As stated earlier, in Section 3.5, differentiation is an O(cq/Ns) operation in a wavelet
basis, and the multiplication of two functions an O(cy, N2) operation. We now try to
estimate the size of the constants in these work estimates. The function v, that we
choose to study is the exact solution to Burgers’ equation at ¢ = 0.3, and is plotted
in Figure 17. For the derivative we examine v, and for the multiplication v,v. We
then study the number of arithmetic operations (a.0.) needed as a function of the
number of levels 7, or equivalently the number of points on the finest scale N. The
wavelet used is Dg and we limit the interaction between scales to three scales.

In Figure 21 we compare the thresholded wavelet derivative with a five-point
centered finite difference derivative that uses 7N a.o. As can be seen, the break-even
point, where it is advantageous to use wavelets, is around N = 2! = 2048 points on
the finest scale.

In Figure 22 we compare the thresholded wavelet product with point-wise multipli-
cation on the finest scale (V a.o.). We make an approximate extrapolation of the num-
ber of a.o. for the wavelet product and find the break-even around N = 223 ~ 8.4 x 10°
points.

x 10

251 b

O 1 1 1 1
7 8 9 10 11 12

log, N

Figure 21: The solid line shows the number of a.o. needed to compute the derivative in a
wavelet basis. The dotted line is the number of a.o. using five point finite differences on
the finest scale.

A natural way to construct a multiresolution analysis in two dimensions is by
using the tensor product (see [10]),

Vipr =V, W, (73)

28 JOHAN WALDEN

x 10
18

14t .

12 1

101 1

6 8 10 12 14 16 18 20 22 24
log, N

Figure 22: Number of a.o. to multiply u with u,.

where

V, = VeV,
W, = (V;oW;) o (W, W;)o (W; V). (74)

This approach leads to wavelets with the same support width in both dimensions.
For these wavelets, differentiation will be an O(N;) operation and multiplication an
O(N?) operation, although the constants involved will be larger in higher dimensions.
This makes the wavelet method well-suited for problems with isolated large gradients
(for example problems with point sources), as Ny = O(log/N) for such problems.
Thus, in higher dimensions the wavelet method will be relatively more advantageous
compared with the finite difference scheme.

5 Conclusions

In this paper we have presented a methodology for solving hyperbolic PDEs in a
wavelet basis with computations done to a prescribed accuracy. The number of
wavelet coefficients that represent the solution is increased or decreased adaptively
by thresholding, during the computations to keep this accuracy. The operators are
also thresholded.

The method can be viewed as an adaptive mesh method, where the mesh is
automatically refined around sharp variations of the solution. An advantage of the

PAPER III 29

method is that we never have to care about where and how to refine the mesh. All
this is handled by thresholding the wavelet coefficients.

The method is well suited for large problems with a solution that is well com-
pressed in a wavelet basis. This is the case for functions that are mostly smooth with
well localized sharp variations. Then the number of significant wavelet coefficients
Ng, is proportional to log N, where N is the number of points on the finest grid. The
work required to differentiate a function is then proportional to N, and to multiply
two similar functions the work is proportional to N2. These work estimates also hold
for problems in higher dimensions.

The constants in the estimates are large. They can be reduced by using other
wavelets than Daubechies wavelets but the problem size has to be large before the
wavelet method outperforms classical methods applied to the finest grid. This is
especially true for the case of multiplication due to the quadratic dependency on NV.
Another consideration for the multiplication is the large amount of memory needed to
store the coefficients of the operator. To make this method efficient also for problems
of smaller size, a new approach to the multiplication might be needed.

References

[1] L. Andersson, N. Hall, B. Jawerth, and G. Peters. Wavelets on closed subsets
of the real line. In Wavelet Analysis and its Applications-Recent Advances in
Wavelet Analysts, volume 3, pages 1-61. Academic Press, 1994.

[2] P. Auscher. Ondelettes a support compact et conditions aux limites. Journal of

Functional Analysis, 111(1):29-43, 1993.

[3] E. Bacry, S. Mallat, and G. Papanicolaou. A wavelet based space-time adaptive
numerical method for partial differential equations. Math. Mod. Num. Anal.,
26(793), 1992.

[4] S. Bertoluzza and G. Naldi. A wavelet collocation method for the numerical
solution of partial differential equations. Technical Report 887, Istituto di Analisi
Numerica del Consiglio Nazionale Delle Riceche, Italy, 1993.

[5] G. Beylkin. On the representation of operators in bases of compactly supported
wavelets. SIAM J. Numer. Anal., 6(6):1716-1740, 1992.

[6] G. Beylkin. On the fast Fourier transform of functions with singularities. Uni-
versity of Colorado at Boulder, 1994.

[7] G. Beylkin, R. Coifman, and V. Rokhlin. Fast wavelet transforms and numerical
algorithms I. Comm. Pure and Appl. Math, 44:141-183, 1991.

[8] B. Bihari and A. Harten. Application of generalized wavelets: an adaptive
multiresolution series. Presented at the International conference on Wavelets,
Taormina, Italy, October 14-20, 1993.

30

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

JOHAN WALDEN

J. D. Cole. On a quasilinear parabolic equation occurring in aerodynamics.
Quarterly of applied mathematics, 9:225-236, 1951.

[. Daubechies. Ten Lectures on Wavelets. STAM, 1992.

P. Fisher and M. Defranceschi. Representation of the atomic hartree-fock equa-
tions in the wavelet basis by means of the BCR algorithm. In Wavelet Analysis
and its Applications, volume 5, pages 495-508. Academic Press, 1994.

G. Fix and G. Strang. A Fourier analysis of the finite element variational method.
In Constructive aspects of Functional Analysis, Rome, 1973.

E. Hopf. The partial differential equation u; + uu, = puy,. Comm. Pure Appl.
Math., 3:201-230, 1950.

J. Keiser. Wavelet Based Approach to Numerical Solution of Nonlinear Partial
Differential Equations. PhD thesis, University of Colorado, 1995.

S. Mallat. Multiresolution approximations and wavelet orthonormal bases of

L*(R). Trans. Am. Math. Soc., 315(1):69-87, 1989.

W. Sweldens and R. Piessens. Quadrature formulae and asymptotic error ex-
pansions for wavelet approximations of smooth functions. SIAM J. of Numer.

Anal., 31(4):1240-1264, August 1994.

J. Waldén. Orthonormal compactly supported wavelets for solving hyperbolic
PDEs. Technical Report 170, Uppsala University, Dept. of Scientific Computing,
Box 120, Uppsala, Sweden, 1995.

