An Adaptive Finite Difference Method for
Time Dependent PDEs

by

Mats Holmstrom

Report No. 199/1997

g\% LS UPPSALA UNIVERSITET UPPSALA UNIVERSITY
TR AN\\C
’ /\\;\\ \ Institutionen for Department of
teknisk databehandling Scientific Computing

S

€33

An Adaptive Finite Difference Method for Time
Dependent PDEs

Mats Holmstrém !

August, 1997

! Uppsala University, Dept. of Scientific Computing, Box 120, S-751 04 Uppsala,
Sweden. matsh@tdb.uu.se

Abstract

A method is presented for adaptively solving time-dependent PDEs. The
method is based on an interpolating wavelet transform using polynomial in-
terpolation on dyadic grids. The adaptability is performed by choosing the
representation based on the magnitude of the wavelet coefficients. Any finite
difference discretization can then be used. As a numerical example the time-
dependent, compressible, Navier-Stokes equations are solved for flow over a flat
plate using centered finite differences. It is found that the proposed method
outperforms a finite difference method on a uniform grid in terms of CPU time
when a highly accurate solution is wanted.

Contents

1

2

Introduction 1
Background 2
2.1 The Navier-Stokes Equations 2
2.2 Flow Overa FlatPlate. 2
2.3 A Finite Difference Method 3
The SPR Method 5
3.1 The Sparse Point Representation—SPR 5
3.2 The Choiceof Basis 6
3.3 A Two-Dimensional Block SPR 8
Numerical Experiments 9

Conclusions 12

1 Introduction

Solutions to partial differential equations (PDEs) often behave differently in
different areas. Examples from fluid dynamics are shocks and boundary layers.
In both cases the solution can be smooth in most of the solution domain, with
small areas where there are steep gradients in the solution (around the shock and
in the boundary layer, respectively). When solving such problems numerically
we would like to adjust the computational grid to the solution. In terms of finite
difference methods, we want to have many points in areas where there is a lot of
variation in the solution, and few points in areas where the solution is smooth.
We are then faced with two questions. How do we construct this non-uniform
grid? How do we discretize the PDE on this grid? In this paper the sparse
point representation (SPR) method provides answers to these questions.

We are interested in solving time-dependent PDEs time-accurately. That
is, we do not seek some steady-state solution, but we want accurate solutions
to the PDE at all times. Therefore we use the method of lines to separately
discretize the PDE in space and time. This paper will concentrate on the space
discretization. We then use a standard ODE solver of sufficiently high order for
the time integration.

Several different approaches for combining finite difference and wavelet meth-
ods have been considered. Jameson [10, 11] uses wavelets for finding where to
refine the grid in a finite difference method, and then uses finite difference
stencils on an irregular grid. Harten [8] has used wavelets to localize where
to apply ENO methods on a uniform grid. Hierarchical grids in combination
with wavelets have been used by Vasilyev and Paolucci [17, 16], where the com-
putation of certain matrix operators is needed, and Frohlich and Schneider [6]
in combination with non-compactly supported interpolating scaling functions.
The interpolating wavelet transform in this paper has been used in a Galerkin
method for solving elliptic problems on the interval by Bertoluzza, Naldi and
Ravel [1]. A general filter bank method was described by Waldén [18]. In an
earlier report by the author [9] the SPR method was introduced for solving
hyperbolic PDEs, which is the basis of this work.

As a motivation for the SPR method; consider the following scenario. We
want to solve a time-dependent PDE with solutions that has the features men-
tioned above (smooth in most parts with small areas of large variation). This
can be done accurately by using a finite difference method on a fine grid. As-
sume that there are N points on the fine grid. If we want a more accurate
solution we increase N. The problem is that when N get large we eventually
find that the problem is too computationally expensive to solve. The SPR
method essentially remove points from the fine grid in regions where the solu-
tion is smooth and keep points in regions of large variation. The method could
be labeled a “sparse finite difference” method since we use adaptability in space
to reduce the computational time, and memory requirements, of a standard fi-
nite difference method. A parameter € controls the representation error on the
new, thresholded, non-uniform grid, and implicitly controls the number of re-
maining points Ny, on this new grid. Conceptually we are still performing our
computations on the fine uniform grid, but we have now introduced an error

proportional to € at all removed grid-points. In practice the computation now
only includes the remaining N points, but the SPR provides us with a method
to reconstruct any point-value on the original fine grid, thus allowing us to use
standard finite difference approximations to the derivatives although the grid is
now non-uniform. The SPR of course introduce some computational overhead
compared to a standard finite difference solver on the fine grid, so we want
N; to be substantially smaller than N, but this is true for the mostly smooth
solutions described earlier.

In Section 2 we describe the physical problem, solving the time-dependent,
compressible, Navier-Stokes equations for flow over a flat plate and present a
discretization by a finite difference method. We then describe the SPR method
and how it is applied, in the framework of the finite difference method, in
Section 3. In Section 4 we compare the performance of the finite difference and
the SPR method when applied to the flow problem.

2 Background

In Section 2.1 we present the time-dependent, compressible, Navier-Stokes equa-
tions. We then describe the geometry and the associated boundary conditions
of the specific problem we want to solve in Section 2.2, flow over a flat plate.
In Section 2.3 we describe the finite difference approximation that we will use.

2.1 The Navier-Stokes Equations

The time-dependent compressible Navier-Stokes equations in non-dimensional
form can be written as

J

Pt = —PgU — PyU — p(u:c + Uy)
Up = —UUp — VUy + ﬁ (21 4+ N uge + (1 + Ny + psyy)
~(p, T + pTy)
v = —q;zuy —uv, + ﬁ ((2u +)\)Uyy + (p+ /\)Ua;y + pVgz) (1)
_;(pyT + pTy)
Ty = —uly— UTZ/ - (7 - 1)(ulﬂ + Uy)T + pfz—:Pr(Tww + Tyy)
\ t Zre (At + 0)% + puy + 02)? + 2102 + 02))

where p is the density, u is the velocity in the x-direction, v in the y-direction
and T is the temperature. The parameters are the Reynolds number Re, the
shear viscosity u, the second viscosity A, the ratio of specific heats 7y, the heat
conductivity k, the Prandtl number Pr and the parameter R, which is related
to the free stream Mach number, My, by R = (yM2,)~1.

2.2 Flow Over a Flat Plate

The geometry of the flow problem is shown in Figure 1. This problem have
been studied by many authors, e.g., in an article by Koren [12]. We set free
stream values for the dependent variables, and denote them by ps = 1, Ueo,
Voo = 0 and Ty, = 1.

0 1 -
0 1 2 3 T

Figure 1: The geometry of the plate-flow problem. To the left is the inflow
boundary and to the right the outflow. The black rectangle is
the plate, which is really infinitely thin. The gray area is the
computational domain.

On the upper boundary (y = 1) we set all normal derivatives to zero. On
the outflow boundary (z = 3) we set the normal derivative of v and T to zero
and specify u = us(t). On the inflow boundary we set v = v, and require that

wt Lﬂ? — 7p=n/7
’y p—

Y

where the pressure, p = pRT. These boundary conditions have been shown to
be stable [7]. On the plate we have the no-slip condition v = v = 0 and we
specify the temperature, T' = To,. On the non-plate part of the lower boundary
we use symmetry for all variables, except v for which anti-symmetry is used.
The plate will at time zero be at rest and we will then accelerate the plate along
the negative z-axis. This can be simulated by choosing a time-dependent free
stream z-velocity, o, = Uxo(t). We have used the function

0, t <0,
uo(t) =4 2(3-2t), 0<t<1,
1, t>1.

to provide a smooth acceleration of the plate. We also need to add the term
ul,(t) in the right hand side of the u-component of the Navier-Stokes equa-
tions (1) to compensate for the moving frame of reference.

2.3 A Finite Difference Method

The problem is discretized separately in time and space using the method of
lines. In time we can use any standard method for solving the resulting sys-
tem of ODEs. We are interested in solving the PDE time-accurately and use
an explicit time-stepping method. Since this paper concentrates on the space
discretization, we choose an explicit ODE solver of at least as high order as the
space discretization. In the numerical experiments we have used the standard
4th order Runge-Kutta method, and choose a small enough time-step so that
the errors in the computations are mainly from the space discretization.

In space we discretize the Navier-Stokes equations by a centered finite dif-
ference scheme of order p. On the boundaries we use one-sided stencils where
boundary conditions are not available.

The finite difference first derivative approximation is

1
=3 gl (@ + 1)
1
and the second derivative approximation is

hQZg f(z+1h).

Here h is the distance between grid points. On an interval the filter coefficients,
g; and g/, depend on z since we use one-sided approximations near the bound-
aries. In Table 1 the filter coeflicients for the first derivative approximation at
the left boundary are shown when p = 2 and 4. The coefficients at the right
boundary are reversed in order and of opposite sign. In Table 2 the filter coef-

Table 1: Filter coefficients, g, for the first derivative approximation at the
left boundary. The coefficients at the right boundary are reversed
in order and of opposite sign.

=] 2 | 1 0 1 2 3 4
p=2] 0 3/2 | 2 | -1/2
> 1 12 00 | 1)2
p=4] 0 25/12 | 4 | -3 | 4/3 [-1/4
1 “1/4| -5/6 | 3/2 | -1/2 | 1/12
>201/12 [-2/3| 0 [2/3]-1/12

ficients for the second derivative approximation at the left boundary are shown
when p = 2 and 4. The coefficients at the right boundary are reversed in order.
In two dimensions the partial derivatives in each direction are evaluated using
the above described one-dimensional approximations. Mixed derivatives of the
type ugy are approximated by successive approximations of the first derivative
in each direction.

This centered discretization (of order 2 and 4) was shown to be stable by
Sjogreen [14] for a linearized problem. The full Navier-Stokes equations was
found to be stable when some artificial viscosity was added.

Artificial viscosity is introduced by adding the term

_Z " z+1h).

in all the discrete equations. We have used the parameter value d = 0.05 in
all our numerical experiments since that led to stable solutions. In Table 3 the
filter coefficients for the artificial viscosity at the left boundary are shown. The
coefficients at the right boundary are reversed in order.

4

Table 2: Filter coefficients, g;’, for the second derivative approximation at
the left boundary. The coefficients at the right boundary are re-
versed in order.

I=| 2 | -1] o0 1 2 3 4 5
p=2| 0 2 5 4 -1
> 1 1| -2 1
p=4] 0 15/4 | -77/6 | 107/6 | -13 | 61/12 | -5/6
1 5/6 | -5/4 | -1/3 | 7/6 |-1/2 | 1/12
>2|-1/12 | 4/3 | -5/2 | 4/3 | -1/12

Table 3: Filter coefficients, g)"", for the artificial viscosity at the left bound-
ary. The coefficients at the right boundary are reversed in order.
[i=]-2]-1]o0[1]2]|3][4]5
0 3 |-14| 26 |-24 |11 -2
1 21-9116 |-14] 6 | -1
>2(1]4]6]-4]1

3 The SPR Method

We will briefly present the Sparse Point Representation (SPR) and the under-
lying interpolating subdivision scheme along with the extension to an interpo-
lating wavelet transform in Section 3.1. In Section 3.2 we discuss the choice of
transform in two dimensions. Finally, in Section 3.3 we present a block SPR
method. Details of the SPR, and its applications for solving some hyperbolic
PDEs, can be found in an earlier paper by the author [9].

3.1 The Sparse Point Representation—SPR

The starting point is the interpolating subdivision scheme introduced by Deslau-
riers and Dubuc [3, 5]. Assume that we have a set of dyadic grids on the real
line, V; = {z;x € R: 2, =27k, k € Z}, j € Z. The dyadic grid Vj;; contains
all the grid points in Vj;, and also additional points inserted halfway in-between
each of the points in V. The locations of points on such dyadic grids are illus-
trated in Figure 2. Function values on finer grids are generated by interpolation
from the next coarser grid by a polynomial of degree p — 1.

The wavelet coefficients associated with the interpolating subdivision scheme
was introduced by Donoho [4] (for the linear case independently by Harten [8]).
The wavelet coefficients are computed as the difference between a known func-
tion value and the value predicted by interpolating subdivision. That is, the
wavelet coefficients encode the error when interpolating the function values from
a coarser scale. This can also be formalized in terms of wavelets and scaling

%) ° ° ° °

i) ° ° ° ° ° °
Va ® © © © o o o o o o o o o
Vs 0000000000000000000000O0O0COF0

Figure 2: Examples of point positions on dyadic grids.

functions [9].

The sparse point representation (SPR) is created by retaining only those
points that correspond to the significant wavelet coefficients, i.e. whose mag-
nitude is grater than e. If any point value is needed that do not exist in the
SPR, we interpolate the value from a coarser scale by interpolating subdivision,
recursively.

An advantage of interpolating subdivision, and the associated wavelet trans-
form, is that the adaption to an interval is straightforward due to the usage of
interpolating polynomials in the construction. If any of the points that define
the interpolating polynomial is not available because it lies outside the bound-
ary we simply use the closest p points that lie inside the interval on the coarser
grid.

A more detailed presentation of interpolating subdivision, the interpolating
wavelet transform, and the related lifting scheme can also be found in a paper
by Sweldens and Schréder [15].

3.2 The Choice of Basis

To represent a function in higher dimensions one can construct bases from a one-
dimensional basis. For wavelet bases there are two commonly used approaches,
which we in this section will call the standard and the non-standard basis. The
former uses tensor products of one-dimensional basis functions to create higher
dimensional basis functions. The latter instead uses tensor products of the
one-dimensional wavelet and scaling function spaces [2]. For multi-dimensional
SPRs we have used the non-standard basis construction since it is necessary
if we want to keep the property of each wavelet coefficient corresponding to a
point value. This being a necessity for the fast algorithms for multiplication and
differentiation. On the other hand, this approach can lead to less compression
of certain functions than if we had used the standard basis. An example is a
smooth function in two dimensions with a large gradient along a line that is
oriented parallel with a coordinate axis. Since the standard basis includes basis
functions that are elongated along the coordinate axes, while all basis functions
in the non-standard basis are square, it is possible that we will have a good
representation using few standard basis functions along the line, while in the
non-standard case we will need many basis functions on the finest scale along
the line to get a good representation.

To investigate this we examine a function that is relevant to the topic of
this article; the velocity parallel to the plate in the two-dimensional Blasius

solution to flow over a flat plate [13]. Here the sharp variation of the function is
restricted to the boundary layer on the plate. The Blasius solution is shown in
Figure 3 for three different values of z. Since the velocity goes from zero to one

1

0.9

0.8

0.7

0.6

“— 0.5

0.4

0.3

0.2

0.1

0

I I I I I I I I I
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Y

Figure 3: The Blasius solution at z = 0.1, 0.5 and 1.0, when Re = 1000.

in the boundary layer, which grows as we move along the plate, we expect that
a standard basis will yield a sparser representation than the non-standard basis
used in the SPR. In Table 4 the point-wise error and compression in a standard
basis is compared with the SPRs non-standard basis. As is evident in the table,

Table 4: The point-wise error and compression in a standard basis and a
non-standard basis. The test case is the Blasius solution at Re =
1000 on a 257 x 257 point discretization of the unit square. The
threshold was choosen to get errors of comparable sizes.

p| Ns € Error
Standard | 2 | 1024 | 0.5-107% | 1.44 - 1072
SPR 212976 | 1.0-10~* | 1.42.10~*
Standard | 4 | 540 | 0.5-107* | 1.17-10~*
SPR 41900 |1.0-107% | 1.59-10"*

the standard basis needs about 1/3 of the coefficients compared to the SPR
when p = 2, and about 1/2 of the coefficients when p = 4. Considering that the
original number of coefficients on the finest grid was 66049 we still have very
good compression using the SPR. The percentage of retained coefficients are
4.5% and 1.4% respectively for the SPR. The locations of the retained points
in the SPR are shown in Figure 4.

0.9F b
0.8 B
o o o
0.7F b
0.6 B
0.5¢ o o o 4
0.45 o o o q
0.3} o o o o dq
o o o
o o o o
o ogogo Oé goo 820@7
ooégo 8 &9 B0Ba0 8080 03808000
O0H0E0H060 Qggéggofogofo@o 09080438 98@000
zgggég ggg dé";b’% d;})gs; ugowowowog S
SISESSSERESSSESERES! Q@P,:S}PPHQ@(M ce o@ogo@o
0.4 5 0.6 0.7
T

Figure 4: The locations of the points in the SPR for a thresholded Blasius
solution, when € = 1074, p = 4 and Re = 1000.

3.3 A Two-Dimensional Block SPR

The choice of the sparse representation is important from a performance point
of view. On one hand we get good compression by using the SPR introduced
in [9] where the representation consists of single point values. On the other
hand, using the SPR makes the overhead in terms of computational complexity
and memory requirements large. We therefore choose to use a block approach.
The representation consists of a hierarchy of ny; x ny; grids, with the value of
each component of the system of PDEs that we want to solve stored at each
grid-point. Here np; is the number of points in each block in the z-direction,
and np; in the y-direction.

The algorithm for refinement of a grid is as follows — for each grid: perform
one step of the interpolating wavelet transform. If any of the generated wavelet
coefficients are greater then e in magnitude, split the grid in four, else keep the
grid. This is done recursively, starting with grid level 0 and continuing until
no further refinement is necessary, or we have reached some specified finest
level. For details of the refinement strategy, as applied to SPRs, see [9]. An
example of the resulting block SPR is shown in Figure 5. Note that the union
of the grids cover the whole domain, while their intersection is empty. The
block SPR needs to change over time as the solution changes, so we perform
the above thresholding after each time step. If all four grids, that earlier were
refined from the same grid on the next coarser scale, have wavelet coeflicients
whose magnitude is smaller then e we replace the four grids with one on the
next coarser scale. If we want to allow for moving features in the solution
we also split grids with neighbors on a finer scale one extra level. Since we

0 1 2 3

Figure 5: Example of a block SPR. Each square is a block grid with ny; X ny;
points and the blocks included in the representation are shaded.
The numbers denote the grid levels.

need neighboring points when approximating derivatives by finite differences
the grids need to communicate point values. To separate computations and
communication we add a layer of ghost points around each block grid. The
number of points in the layer is proportional to the order of the finite difference
method, e.g., one point when p = 2 and two points when p = 4. Examples
of such block grids are shown in Figure 6. We then only need to update the

O O O OO0 O0
C ® ® e e O
O e ® e e O
O e ® e e O
[ONN BN BN BN JNG)
O O O OO0 O0
[ONN I BN BN)
[ONN I BN BN)
(O TN BN BN)
(ONN TN BN BN)
O O O O O

Figure 6: To the left an interior block grid and to the right a boundary block
grid (upper left corner). Filled circles denote points included in
the representation while unfilled circles denote ghost points. The
block size is 4 in both directions (ny; = 4 and ny; = 4).

function values at ghost points between the stages in the Runge-Kutta solver.
The advantage of this approach is the locality of reference in the computations.
This is important for performance on serial computers with cache memory, but
even more so if we want to use parallel computers with distributed memory.

When a point value is needed that is not in the block SPR, we use interpo-
lating subdivision to generate the point value from coarser grids.

4 Numerical Experiments

We compare the block SPR solver with the finite difference (FD) solver for a low
Reynolds number flow. The aim of the comparison is to verify the correctness of
the sparse solution and to estimate the sparse solver’s computational overhead.
We choose a low Reynolds number (Re = 100) to be able to compute a finite
difference solution in reasonable time. In what follows, if not stated otherwise,

we have used the values d = 0.05, v = 0.05, Pr =0.71, M, = 0.1, p =1, A =
—2/3 and v = 1.4. The timings were made on one of the processors (EV5/300
MHz) on a Digital Alpha Server 8200. The block SPR solver was implemented
in C++, while the finite difference solver was implemented in Fortran 90.

In Figure 7 the CPU time as a function of grid points in the z-direction,
n;, is shown. For the SPR method n; is the maximum number of points on the
finest level. The grid dimensions are 129 x 65, 257 x 129 and 512 x 256. The
block sizes are ny; = 32 and ny; = 16. The interpolation is linear (p = 2). The
error in the solution (as compared to an FD solution on a finer grid) for the FD
and the SPR method was comparable in size when the grid size on the finest
level of the SPR was equal to the FD grid size and € = 10™%. The error was
measured in maximum norm along the line x = 1.5 in the middle of the plate
to avoid influence from the singularity at the front plate corner (as was done by
Koren [12]). As could be expected, for n; = 129 the FD method outperforms

10°

10

tcpu

10°F

2

I I 1 1 1
100 150 200 250 300 350 400 450 500 550
g

1 1

Figure 7: The CPU time as a function of grid points in the z-direction. Solid
line for the sparse solver and dashed line for the finite difference
solver, At = 0.0004, 0.0002 and 0.0001 when p = 2.

the block SPR method and is also faster when n; = 257. This is due to the
overhead associated with the sparse solver, e.g., updating the ghost points and
the fact that the sparse structure makes the code more difficult for the compiler
to optimize. For small enough problems the standard FD method will always
be faster. But for n; = 513 the block SPR method is significantly faster. So
the larger the problem is the more we save in computational time by using the
block SPR method. The reason that the timings are not on a straight line is
probably cache effects. For small problems all data fits in the cache while larger
problem sizes makes the computational speed limited by access times to main
memory.

10

In Figure 8 the corresponding times are shown when p = 4. The same trend

10°

250 3(‘)0 3.:30 4(‘)0 4J50 580 550
n;
Figure 8: The CPU time as a function of grid points in the z-direction. Solid
line for the sparse solver and dashed line for the finite difference
solver, At = 0.0002 and 0.0001 when p = 4.

as when p = 2 is evident. The FD solver is slightly faster when n; = 257 but
for n; = 513 the block SPR method is faster.

The savings in computational times are linked to the savings in memory
requirements. In Table 5 we show the number of blocks in the representations at
t = 1 for the above presented numerical examples. We see that the compression

Table 5: The number of blocks in the representations at ¢ = 1 for the above
presented numerical examples.

p | n; | Number of blocks/total
2 [129 16/16

2 | 257 55/64

2 | 513 109/256

4| 257 37/64

4 | 513 46/256

is better for cubic than for linear interpolation.

In Figure 9 the number of blocks in the block SPR is shown as a function
of time. The plateau after ¢ = 0.6 is due to the fact that the refinement has
reached the finest level. We note that the number of blocks increases as the
boundary layer grows until we reach a maximum value at ¢ = 0.5.

11

100

90 B

70r b

60~ b

30 b

20 b

10 b

O 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t

Figure 9: The number of blocks in the block SPR as a function of time. The
block dimensions are ny = 16 and ny; = 8 with a finest grid of
513 x 257. The time-step At = 2-10"4, p = 2 and the threshold
e=10"2.

5 Conclusions

We have presented a method for adaptively solving time-dependent PDEs, the
block SPR method. The adaptability is achieved by monitoring the wavelet
coefficients generated by an interpolating wavelet transform. The representa-
tion automatically adapts when the solution changes over time. This adaption
works both for features that are moving and for features that develop over time.
The sparse representation lead to savings in the time needed to achieve a solu-
tion with a certain accuracy in maximum norm compared to a solution by finite
differences. By using the block SPR method we also reduce the memory require-
ments. The method is most efficient when applied to problems with solutions
that are smooth in most of the domain with small areas of sharp variation.

As an example of an application we solved the compressible, time depen-
dent, Navier-Stokes equations for flow over a flat plate. Here the block SPR
method automatically refines the representation in the boundary layer close to
the plate. We found savings both in computational time and memory require-
ments compared to a solution by a finite difference scheme on a uniform fine
grid.

References

[1] Silvia Bertoluzza, Giovanni Naldi, and Jean Christophe Ravel. Wavelet
methods for the numerical solution of boundary value problems on the

12

[10]

[11]

[12]

[13]

[14]

[15]

interval. In Charles K. Chui, Laura Montefusco, and Luigia Puccio, editors,
Wavelets: Theory, Algorithms and Applications, pages 425-448. Academic
Press, 1994.

Ingrid Daubechies. Ten Lectures on Wavelets, volume 61 of CBMS-NSF
regional conferences series in applied mathematics. STAM, 1992.

G. Deslauriers and S. Dubuc. Symmetric iterative interpolation processes.
Constructive Approzimation, 5(1):49-68, 1989.

David L. Donoho. Interpolating wavelet transforms. Technical Report 408,
Dept. of Statistics, Stanford University, November 1992.

Serge Dubuc. Interpolation through an iterative scheme. Journal of Math-
ematical Analysis and Applications, 114:185-204, 1986.

Jochen Frolich and Kai Schneider. An adaptive wavelet-vaguelette algo-
rithm for the solution of nonlinear PDEs. Preprint SC 95-28, ZIB, Berlin,
November 1995.

Bertil Gustafsson and Arne Sundstrom. Incompletely parabolic problems
in fluid dynamics. STAM Journal on Applied Mathematics, 35(2):343-357,
September 1978.

Ami Harten. Adaptive multiresolution schemes for shock computations.
Journal of Computational Physics, 115(2):319-338, 1994.

Mats Holmstrom. Solving hyperbolic PDEs using interpolating wavelets.
Technical Report 189, Dept. of Scientific Computing, Uppsala University,
Box 120, S-751 04 Uppsala, Sweden, December 1996.

Leland Jameson. On the wavelet optimized finite difference method. Tech-
nical Report ICASE 94-9, NASA Langely Research Center, March 1994.

Leland Jameson. A wavelet-optimized, very high order adaptive grid and
order numerical method. Technical Report ICASE 96-30, NASA Langely
Research Center, May 1996.

Barry Koren. Upwind discretization of the steady navier-stokes equations.
International Journal for numerical methods in fluids, 11:99-117, 1990.

Hermann Schlichting. Boundary-Layer Theory. McGraw-Hill, seventh edi-
tion, 1979.

Bjorn Sjogreen. High order centered difference methods for the compress-
ible navier-stokes equations. Journal of Computational Physics, 117(1):67—,
March 1995.

Wim Sweldens and Peter Schréder. Building your own wavelets at home.
Technical Report IMI 1995:5, Dept. of Mathematics, University of South
Carolina, 1995.

13

[16]

[17]

[18]

Oleg V. Vasilyev and Samuel Paolucci. A dynamically adaptive multilevel
wavelet collocation method for solving partial differential equations in a
finite domain. Journal of Computational Physics, 125(2):498-512, 1996.

Oleg V. Vasilyev, Samuel Paolucci, and Mihir Sen. A multilevel collocation
method for solving partial differential equations in a finite domain. Journal
of Computational Physics, 120(1):33-47, 1995.

Johan Waldén. Filter bank methods for hyperbolic PDEs. Technical Report
185, Dept. of Scientific Computing, Uppsala University, Box 120, S-751 04
Uppsala, Sweden, 1996.

14

