Why should we compare models?

Mats Holmstrom

Swedish Institute of Space Physics

mat sh@rf. se

m
[=

SWIM 08
San Diego
January 25, 2008

Overview

* Background

* Traditional physics < Computer simulations
* Problems with current practices?

* Suggestions for solutions

* Why should we compare models?

* Future activities?

Background

* Published papers on the Mars-solar wind iteraction
show small and large differences in, e.g., ion escape
rates, ion flux morphology, ...

* |s the reason due to
- Model? MHD? Hybrid?

— Boundary conditions and source terms? Solar wind
conditions? Exosphere model? lonosphere model?

— Numerical issues? Grid resolution? Number of particles?
Simulation time?

— Errors? In the implementation? Model problems?

Mars-Solar Wind Models

Mars-Solar Wind Models

Input Qutput
Solar wind Escape rates

Exosphere

Traditional Physics Research

* Hard sciences: Reproducibility
— External reality
— Simple physical laws

- Independence of the observer

Reproducibility in Computing

Difficulties:

For one program:
Changing environment. All must be known.

For many programs: We will focus on this.

Results are often reproduced for different set of
parameters/conditions

The situation (Bruckheit et al.):

* Researchers cannot reproduce others work
* Advisors cannot investigate student's problems

* Researchers cannot reproduce their own work

Reproducibility in Solar System Simulations

* Of course results reproducible, e.qg., a hybrid
simulation of the Mars-Solar wind interaction
with a Chamberlain exosphere, and as
described in the paper.

* Anyone should be able to make a new version
of the modell, thus reproducing the results

* Problem: Details matter in computing...

Stages

Space Physics example

World Model Algorithm Implementation

Solar wind-planet Magnetohydrodynamics Finite volumes Fortran

interaction (MHD) MPI

Example

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 10, OCTOBER 1994 785

How Accurate Is Scientific Software?

Les Hatton and Andy Roberts

Abstract— This paper describes some results of what, to the
authors’ knowledge, is the largest ¥-version programming ex-
periment ever performed. The object of this ongoing four-year
study is to attempt to determine just how consistent the re-
sults of scientific computation really are, and, from this, to
estimate accuracy. The experiment is being carried out in a
branch of the earth sciences known as seismic data process-
ing, where 15 or so independently developed large commercial
packages that implement mathematical algorithms from the same
or similar published specifications in the same programming
language (Fortran) have been developed over the last 20 years.
The results of processing the same input dataset, using the
same user-specified parameters, for nine of these packages is
reported in this paper. Finaily, feedback of obvious flaws was
attempted to reduce the overall disagreement. The results are
deeply disturbing. Whereas scientists like to think that their
code is accurate to the precision of the arithmetic vsed, in this
study, numerical disagreement grows at around the rate of 1% in
average absolute difference per 4000 lines of implemented code,
and, even worse, the nature of the disagreement is nonrandom,
Furthermore, the seismic data processing industry has better
than average quality standards for its software development with
both identifiable quality assurance functions and substantial test
datasets. Comparing the results reported here with other work by
Hatton showing broadly similar statically detectable fault rates in
software from different disciplines gives strong indications that
the software realisations of work in other scientific fields may
be a great deal less accurate than many would believe. Against
this backdrop, the authors believe that little progress will be
made in some sciences until the problem is reduced, particularly
in remote sensing, where the answer is generally inaccessible to
direct measurement. To this end, the feedback experiments that
formed part of the study proved valuable, resulting in significant
reductions in disagreement.

for example, that resolution (say, around 0.001% in typical
floating point formats) and accuracy are synonymous—the
widespread use of double precision in some sciences is in-
dicative of the accuracy expectations. The software testing
procedures used are left entirely to the authors of the scientific
work. Regrettably, as we shall see, scientists are no more
successful at writing reliable software than anyone else.

This paper attempts to analyze the scale of the problem in
two distinct ways. First, the results of static fault analysis for
many different application areas [1] are briefly reviewed. The
object of this parallel study was to see if different scientific
application areas tended to have the same programming lan-
guage problems or whether certain areas exhibited a greater or
lesser susceptibility than the average to the inadvertent misuse
of programming language.

Second, the results of analyzing one particular application
area, that of seismic data processing, is studied in depth. This
particular application area is probably unique in scientific com-
putation in that it has remained both a highly competitive and
a mature environment. During the last 30 years or so, some 15
to 20 proprietary packages with several recognisably different
architectures have been developed in effective isolation from
each other, all ostensibly doing the same thing. During this
time, new algorithms have been added and old ones have been
rewritten to take advantage of advances in either hardware
or software. The authors have chosen to refer to this as an
N-version experiment, although there appears to be some
controversy over this nomenclature. Here the authors mean
thea comparmenn af ontsiite of NV eofrware mackaosse weittan o

Example

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 10, OCTOBER 1994 785

How Accurate Is Scientific Software?

Les Hatton and Andy Roberts

Abstract— This paper describes some results of what, to the
authors’ knowledge, is the largest ¥-version programming ex-
periment ever performed. The object of this ongoing four-year
study is to attempt to determine just how consistent the re-
sults of scientific computation really are, and, from this, to
estimate accuracy. The experiment is being carried out in a
branch of the earth sciences known as seismic data process-
ing, where 15 or so independently developed large commercial
packages that implement mathematical algorithms from the same
or similar published specifications in the same programming
language (Fortran) have been developed over the last 20 years.
The results of processing the same input dataset, using the
same user-specified parameters, for nine of these packages is
reported in this paper. Finaily, feedback of obvious flaws was
attempted to reduce the overall disagreement. The results are
deeply disturbing. Whereas scientists like to think that their
code is accurate to the precision of the arithmetic vsed, in this
study, numerical disagreement grows at around the rate of 1% in
average absolute difference per 4000 lines of implemented code,
and, even worse, the nature of the disagreement is nonrandom,
Furthermore, the seismic data processing industry has better
than average quality standards for its software development with
both identifiable quality assurance functions and substantial test
datasets. Comparing the results reported here with other work by
Hatton showing broadly similar statically detectable fault rates in
software from different disciplines gives strong indications that
the software realisations of work in other scientific fields may
be a great deal less accurate than many would believe. Against
this backdrop, the authors believe that little progress will be
made in some sciences until the problem is reduced, particularly
in remote sensing, where the answer is generally inaccessible to
direct measurement. To this end, the feedback experiments that
formed part of the study proved valuable, resulting in significant
reductions in disagreement.

for example, that resolution (say, around 0.001% in typical
floating point formats) and accuracy are synonymous—the
widespread use of double precision in some sciences is in-
dicative of the accuracy expectations. The software testing
procedures used are left entirely to the authors of the scientific
work. Regrettably, as we shall see, scientists are no more
successful at writing reliable software than anyone else.

This paper attempts to analyze the scale of the problem in
two distinct ways. First, the results of static fault analysis for
many different application areas [1] are briefly reviewed. The
object of this parallel study was to see if different scientific
application areas tended to have the same programming lan-
guage problems or whether certain areas exhibited a greater or
lesser susceptibility than the average to the inadvertent misuse
of programming language.

Second, the results of analyzing one particular application
area, that of seismic data processing, is studied in depth. This
particular application area is probably unique in scientific com-
putation in that it has remained both a highly competitive and

a mature environment. During the last 30 years or so, some 15
to 20 proprietary packages with several recognisably different

architectures have been developed in effective isolation from

each other, all ostensibly doing the same Ih:'n& During this

time, new algonthms have been added and old ones have been
rewritten to take advantage of advances in either hardware
or software. The authors have chosen to refer to this as an
N-version experiment, although there appears to be some
controversy over this nomenclature. Here the authors mean
thea comparmenn af ontsiite of NV eofrware mackaosse weittan o

Example

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 20, NO. 10, OCTOBER 1994 785

How Accurate Is Scientific Software?

Les Hatton and Andy Roberts

Abstract— This paper describes some results of what, to the
authors’ knowledge, is the largest ¥-version programming ex-
periment ever performed. The object of this ongoing four-year
study is to attempt to determine just how consistent the re-
sults of scientific computation really are, and, from this, to
estimate accuracy. The experiment is being carried out in a
branch of the earth sciences known as seismic data process-
ing, where 15 or so independently developed large commercial
packages that implement mathematical algorithms from the same
or similar published specifications in the same programming
language (Fortran) have been developed over the last 20 years.
The results of processing the same input dataset, using the
same user-specified parameters, for nine of these packages is
reported in this paper. Finaily, feedback of obvious flaws was
attempted to reduce the overall disagreement. The results are
deeply disturbing. Whereas scientists like to think that their
code |Is accurate to the precision of the arithmetic used, in this
study, numerical disagreement grows at around the rate of 1% in
average absolute difference per 4000 lines of implemented code,
and, even worse, the nature of the disagreement is nonrandom,
Furthermore, the seismic data processing industry has better
than average quality standards for its software development with
both identifiable quality assurance functions and substantial test
datasets. Comparing the results reported here with other work by
Hatton showing broadly similar statically detectable fault rates in
software from different disciplines gives strong indications that
the software realisations of work in other scientific fields may
be a great deal less accurate than many would believe. Against
this backdrop, the authors believe that little progress will be
made in some sciences until the problem is reduced, particularly
in remote sensing, where the answer is generally inaccessible to
direct measurement. To this end, the feedback experiments that
formed part of the study proved valuable, resulting in significant
reductions in disagreement.

for example, that resolution (say, around 0.001% in typical
floating point formats) and accuracy are synonymous—the
widespread use of double precision in some sciences is in-
dicative of the accuracy expectations. The software testing
procedures used are left entirely to the authors of the scientific
work. Regrettably, as we shall see, scientists are no more
successful at writing reliable software than anyone else.

This paper attempts to analyze the scale of the problem in
two distinct ways. First, the results of static fault analysis for
many different application areas [1] are briefly reviewed. The
object of this parallel study was to see if different scientific
application areas tended to have the same programming lan-
guage problems or whether certain areas exhibited a greater or
lesser susceptibility than the average to the inadvertent misuse
of programming language.

Second, the results of analyzing one particular application
area, that of seismic data processing, is studied in depth. This
particular application area is probably unique in scientific com-
putation in that it has remained both a highly competitive and
a mature environment. During the last 30 years or so, some 15
to 20 proprietary packages with several recognisably different
architectures have been developed in effective isolation from
each other, all ostensibly doing the same thing. During this
time, new algorithms have been added and old ones have been
rewritten to take advantage of advances in either hardware
or software. The authors have chosen to refer to this as an
N-version experiment, although there appears to be some
controversy over this nomenclature. Here the authors mean
thea comparmenn af ontsiite of NV eofrware mackaosse weittan o

Example

CDP TRACE NUMBER

800 800 1000 1100 1200
1500 : ' - 127
112
1600 a6 .
W L
80 > 0
==
84 EFE
1700 ? 2
48 = ;
| o
1800 & e
: 16
0
1900
-18
-32 "
2000 T
-48 = O
= =2
- -64 « £
2100 e 4
= w
80 zZ3
_ . =98 <
g 2200 112
o
E -128
= 2300
e
z
(2 2400
2500
2600
2700
2800
2300 -
3000
31920

Fig. 2. An example of the final output of a seismic data processing sequence as analyzed by the geologist. The black lines correspond essentially to
echoes from strata within the earth and give valuable information concerming the stratigraphy. The horizomtal scale is distance along the surface of the

carth and the vertical scale is echo travel time.

CoP TRACE WUNMAER COP TRACE NUMBER COP TRACE MUMBER

()]
o
E 1 400
)
>< - - §
= - 3800 ®
L = £E
: 3
L 1800 o !
: 1Te0
1000
L3
5K
= E
@ T
-3
2400 «
] 1400
[]
L]
E
- 2800
t 2700
1800
CDPF TRACE NUMBER
1400
.:; 1800
E
= TR0
[
]
- 1700

1800

PACKAGE 7 PACKAGE 8 PACKAGE ¢ AVERAQGE

Fig. 10. A collage of the nine different identically processed end-products (calibration point 14) as would be analyzed by a geoscientist, It would be nice
to find that they agree to within the single-precision floating-point anithmetic used, i.c., around 0.001%. In practice, differences amount o around 100000 1o
1 000000 times worse than this. Note that the bortom right cross-section represents the average of all the nine individual cross-sections. Horizontal stripes are
ming lines and are the same on each and the vertical stripes correspond to areas of gross departure and have been statistically trimmed.

Why*? Are code errors a problem?

* "Physics computing is easy, and therefore
reliable”

* Counter example: Binary search

Binary Search

°* Problem:

* Determine if the sorted array x[0..n-1]

contains the target element r. The answer is

stored in p.

If IS not in the array, p Is -1.

* Solution by binary search
t=17.

2

7

10

12

17

23

10

12

17

23

%
r

10

12

17

23

Binary Search

* 10% of professional programmer can implement
this without errors in a couple of hours (Bentley)

* The first binary search was published in 1946.
The first binary search without bugs was published
in 1962 (Knuth)

Open source code?

Why keep the source code secret?
* Work

* Fear

* Control

* Commersial value

* No benefits

Valid reasons, but not in tune with science

SYMBOSILM Oy
COMPUTER SIMULATION OF PLASMA
AND MANY-BODY PFROBLEMS

A 40 year old debate dilia

Wi iy, magns 2 b,
RV E Im 7

When an institution publishes a scientific paper, or even a report, the
division hesd or professor won't let it go out without its being checked by
colleagues and refereed by himself. Sc equally, I would advocate that we
should write programs and subroutines that we are not afraid to give to other
people. We should try to make each program as readable as a mathematical
textbook, and should try to adopt the principle that all impcrtant programs
are published. If a program 1s never published apd if it is not intelligible,
how are we to known that the results are right? In a few years, some of
these programs may produce s great amount of dats and some very interesting
physical results, which are analogous to astronomic observations or to records
of careful scilentific measurements - say on the earth's magnetic field. If
this data is based on progrems of quite unknown validity, nobody can check
the results and I think that the scientific literature may get corrupted. 5o
I feel that we should actually publish all our programs in an intelligible
form, and set very high standards comparable to those of the rest of science.

Keith V. Roberts, Panel Discussion on: Applications and Organization of the new Field of
Computational Physics, Symposium on Computer Simulation of Plasma and Many-Body
Problems, Williamsburg, Virginia, April 19-21, 1967, NASA SP-153.

Suggestions for solutions

Publish source code and parameter settings
Write specifications

Use source code control systems

Testing

— Perturbed parameters and initial conditions
— Automated testing

— Automated generation of figures in publications:
Reproducible research

Model Intercomparisons

* A first step toward reproducible simulations

* Many examples from other fields, e.g.,

ABOUT ' WCRP CMIP3 ' PROJECTS ' SOFTWARE ' PUBLICATIONS

4714 - 112372008

WHAT'S NEW? | " PCMDI > Projects > AMIP

b PCMDIYWGNE AMIP
Systematic Errors
Workshop
Presentations World Climate Research Programme

: : Working Group on Numerical Experimentation
e e e Atmospheric Model Intercomparison Project
= AMIP Toulouse Workshop Proceedings

anrle. o & " m B EEFY™S anrl. o B " . B oo .

Why should we compare models?

Our proposed strategy to tackle the problem of reproducibility and standardization
of numerical models in planetary science is to initiate model intercomparison
activities. The benefits of model intercomparison activities are many, among them

(1) Ensures that the science is reproducible
(2) Model errors will be found

(3) Standardized data formats for the simulation outputs, making simulation results
easier available to data analysts that are not directly involved in simulations. This
will also stimulate the comparison between observations and the results of
numerical models.

(4) Standardized software interfaces, services, and libraries. This will enable
software reuse, e.g., of visualization tools and data I/O libraries. It will also simplify
the coupling of models, e.g., magnetosphere, exosphere, or thermosphere models.

(5) Collaboration between different research groups, using different codes, will
increase and provide new research groups in the field with a starting point and
reference solutions, and

(6) New diagnostics will be found, i.e. new ways of looking at model results.

Model Intercomparisons

* An iterative process.
Continue after this meeting with

— Workshops
- Website

* Two possible options to continue the effort

- ISSI team proposal

- EU FP7 Europlanet Proposal

References

(1) Computing in Physics: The Challenges of Reproducibility, Reliability, and
Complexity, Vincent Sacksteder, preprint, 2003.

(2) How Accurate is Scientific Software?, Les Hatton and Andy Roberts, IEEE
Transactions on Software Engineering, v. 20, n. 10, 1994.

(3) Designing Scientific Components,
Paul F. Dubois, Computing in Science and Engineering, IEEE, Sep/Oct 2002.

(4) Making Scientific Computations Reproducible, Matthias Schwab, Martin
Karrenbash, and Jon Claerbout, Computing in Science and Engineering, IEEE,
Nov/Dec 2000.

(5) WavelLab and reproducible research, Jonathan B. Bruckheit and David L.
Donoho, preprint.

(6) Programming Pearls, 2nd ed., Jon Bentley, 2000.

