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Abstract

A hierarchical volume rendering algorithm is presented. Volume emissions in opti-
cally thin media are considered. A sparse hierarchical wavelet-based representation
of the directional volume emission rate function is constructed top-down and then
projected onto the image plane. This makes the algorithm fast, since the number of
operations is proportional to the number of coefficients in the representation. Also,
the sparsity minimizes the algorithm’s memory requirement. The representation is
constructed using conservative subdivision, making the projection onto a lower di-
mensional representation trivial. The error is controlled by a threshold parameter,
allowing a direct trade-off between speed and accuracy. The algorithm is especially
well suited when the directional volume emission rate is computationally expensive
to evaluate, since the sparse representation minimizes the number of function eval-
uations for rendering a volume with a specified accuracy. Since a sparse oct-tree is
constructed for a specific view point the method is best suited to situations where
one image is to be generated from each view point.

Key words: Volume Rendering, Subdivision, Oct-tree

1 Introduction

Here we consider computer imaging of volume emissions. For visible light we
are imaging the flux of photons in the direction of the observer. In computer
graphics this process is denoted volume rendering [12], but the problem is not
limited to visible light. Other applications, that inspired this work, are X-ray
and energetic neutral atom imaging [8,9]. For these two applications, the ex-
traction of parameters from non-linear emission models require the generation
of many images (for different parameters) and the directional volume emission
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rate is given by a function that is computationally expensive to evaluate. The
directional volume emission rate is the number of photons (or atoms) that are
produced per volume per time unit, as a function of position and (emission)
direction. The unit can for example be [1/(m3 sterad s)].

We make the assumption that the medium through which the emissions propa-
gate is optically thin, i.e. there is no attenuation of the emissions. Pure volume
emissions are considered, in the sense that no surfaces are present. Extensions
of the presented algorithms to surfaces and opaque media are possible, but
not discussed in this work. Some desirable properties of a volume rendering
algorithm are:

• Speed. Minimize the number of evaluations of the directional volume emis-
sion rate function. This is especially important if each evaluation is compu-
tationally expensive, as is the case if the function is given by a complicated
numerical or analytical model.

• Error control. It is of course desirable to minimize the error, but for all
rendering algorithms this comes at the expense of computational time. For
visualization applications the error requirements are usually not that strin-
gent. It is enough if the error is small enough not to be visually detected. In
scientific applications, such as parameter extraction from models, the sit-
uation is different. Here the comparison of simulated and observed images
require that the error in the volume rendering is smaller than the observa-
tional error, so that the rendering does not restrict the achievable accuracy
of the extracted parameters. In all applications it is desirable to easily be
able to control the error (and indirectly, the computational time).

• Minimal memory requirements. In what follows, we assume that the number
of pixels in the final image is O(N 2), and that a fine grid on the imaged
volume has O(N 3) grid points. An algorithm should not require the storage
of the directional volume emission rate on a fine grid, O(N 3) storage. 1

Ideally the memory requirement should be proportional to the number of
pixels in the final image, O(N 2) storage.

The method we propose uses a wavelet-based representation of the directional
volume emission rate, generated by conservative subdivision — a represen-
tation with the property that the coefficients can directly be projected on a
representation in the image plane (coefficient splatting) in constant time per
coefficient (actually with just one arithmetic operation per coefficient, since the
projection is a summing of the coefficients due to the conservation property of
the representation). This, along with a top-down approach when constructing
the representation, makes the computational work and memory requirements

1 The big-oh notation (O) is intentionally used rather loosely here, since we for
simplicity have assumed that the volume has the same extensions in all directions,
and that the whole volume is projected onto the view plane.
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proportional to Ns, the number of significant coefficients in the representation.
Thus, the algorithm is fast, and it is also conceptually simple. The subdivision
is denoted conservative since the volume integral of the represented function
is conserved when a cell is subdivided, and when it is projected. This is a
natural property when representing physical properties such as photon flux or
density.

For comparison, Fourier-based rendering [17] reduces the computational com-
plexity of the straight forward rendering algorithm [4] from O(N 3) to O(N2 log N),
but this is still potentially more expensive than the O(Ns) algorithms that are
possible using a wavelet approach. This approach also provides error estimates
and error control, automatically.

The proposed algorithm has similarities to that presented by Keller [13], in
that correlations between pixels are used to increase speed, but Keller’s algo-
rithm is one-dimensional (along scan lines) and is solely in the image plane.
He also uses stochastic (Monte Carlo) sampling for pixel irradiances. Since
the aim of our approach is to control the error, a stochastic method is not ap-
propriate. Another algorithm that is adaptive in the two-dimensional image
plane is presented by Bao, Jin and Peng [1] for global illumination.

One can view the proposed method as an extension of the hierarchical oct-tree
representation used by Laur and Hanrahan [14]. They introduced a first order
representation (mip-map) and assembled the whole tree before the rendering
of the basis function foot prints onto the image plane. The contributions of
this work, compared to the mip-map, is that

• The full pyramid representation is never needed since we build the sparse
oct-tree top-down.

• The coefficients are projected onto the image plane before a two-dimensional
inverse transform that produces the image (coefficient splatting, used by
Lippert [16]).

• The order of the spatial accuracy of the algorithm is determined by the order
of the subdivision algorithm used. The numerical examples that we present
uses quadratic (third order) subdivision, but the method easily generalizes
to higher order, and we can find a trade-off between the increased spatial
accuracy (smaller oct-tree) and the increased cost for the subdivision of
each cell (more cells in the subdivision stencil).

The first two properties ensures that the running time is kept proportional to
the number of nodes in the sparse oct-tree, Ns.

Several wavelet-based algorithms for volume rendering have been published [19,7,16,5,6,3],
but the wavelet bases used have not been suited for the integration needed
when projecting the intensities onto the image plane, requiring expensive
transformations to point values on a fine grid, projections of basis function
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footprints, or numerical quadrature. Lippert [16] presents a wavelet-based al-
gorithm that uses splatting of wavelet coefficients, but the basis is such that
the necessary computations for each splatted coefficient makes the projection
expensive. Also, the representation is built from a fine grid, so the work is
proportional to N 3. We can note that the construction of a wavelet represen-
tation from a fine grid (bottom up) is not necessarily a big problem if one is
to generate many images (from different view points) using the same repre-
sentation, e.g., for an animation, or for tomographic reconstruction, since the
O(N3) work will be amortized over all the generated images. If however, one
only generates one image using the representation, the O(N 3) work will be
prohibitively expensive.

2 Theory

First of all, we define the volume rendering problem, and a canonical problem
is introduced to simplify the presentation of different algorithms. Then we
introduce a hierarchical representation for fast volume rendering. When a
variable is used both with and without boldface, standard typeface denotes
the vector’s magnitude, e.g., the distance to the origin is r = |r|.

Assume that the directional volume emission rate from position r in the di-
rection of d (unit length) is given by g(r,d) [1/(m3 sterad s)]. These volume
emissions can for example be photons or atoms. Then the radiance at the
position r from the direction of d (unit length) is

f(r,d) =

∞∫

0

g(r + sd,−d) ds [1/(m2 sterad s)], (1)

i.e. the radiance is given by an integration of the directional volume emis-
sion rate along a line of sight (LOS) in the view direction, d, as illustrated
in Figure 1. An introduction to radiometric quantities can be found in [15].

Fig. 1. The radiance, f , at the position r, from the direction d, is computed by
integration of the directional volume emission rate, g(s), along a line of sight.

From now on we will assume that the observer is located at the origin of our
coordinate system. Then the emission direction that we are interested in is
always directed toward the origin, d = −r/r, and we can simplify the nota-
tion by dropping g’s directional dependence, g(sd) ≡ g(r + sd,−d), and f ’s
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dependence on position, f(d) ≡ f(r,d), so that (1) becomes

f(d) =

∞∫

0

g(sd) ds [1/(m2 sterad s)], (2)

Then the irradiance from a finite solid angle Ω, e.g., corresponding to an image
pixel, can be formulated in two ways,

(1) as a two-dimensional integral of the radiance over the solid angle,

F (Ω) =
∫

Ω

f(d) dΩ [1/(m2 s)], or (3)

(2) as a three-dimensional integral of the directional volume emission rate
over the volume corresponding to the solid angle Ω,

F (Ω) =
∫

V

g(r)

r2
dV [1/(m2 s)], (4)

where V is the conic volume corresponding to Ω and the decrease in solid angle
subtended by the receiver, as seen from r, results in the factor 1/r2. The geom-
etry is shown in Figure 2. The two formulations are of course mathematically

Fig. 2. The irradiance can either be computed by two-dimensional integration
of the radiance, f , over all directions, d, contained in the solid angle Ω, or by
three-dimensional integration of the directional volume emission rate, g, over the
volume corresponding to the solid angle.

equivalent, but they represent two different approaches when constructing al-
gorithms for solving the volume rendering problem. We can think of F as
received surface flux on an area element at the origin, perpendicular to the
center of the solid angle. We have assumed that Ω is small and neglected a
factor cos θ in the integration, where θ is the angle between r and the normal
of the receiving area element. For a single image pixel, i, with a corresponding
solid angle, Ωi, centered around di, we thus have two approaches to compute
the average radiance,

fi = F (Ωi)/Ωi, [1/(m2 sterad s)].
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Denote the approach corresponding to (3) by LOS and that corresponding
to (4) by VOL.

In practice, regardless of the chosen approach, the integrals are evaluated by
numerical quadrature. Using the midpoint quadrature rule for LOS in (3), we
have the approximation fi ≈ f(di). This is the straight forward, classical, way
of generating an image of a radiation field, where we for each pixel do a line
of sight (LOS) integration in the direction corresponding to a pixel, di.

The solid angles corresponding to each pixel in an images are defined by
the chosen view perspective and discretization of the image plane. Different
projections are shown in Figure 3, along with image plane grids that define the
pixels. Regardless of projection, the problem can be seen as a projection of a

Fig. 3. Examples of different projections of volumes onto image planes. From left to
right; perspective, polar and canonical. The image planes, with pixels, are indicated
by grids. If we define a closest and farthest distance for the perspective and polar
projections, we can coordinate transform both to the canonical projection. In the
polar case, the canonical unit cube will be periodic in the azimuth direction.

three-dimensional volume onto a two-dimensional plane along lines of sights.
By defining the problem as a canonical projection of the unit cube onto the xy-
plane along the z-axis, the algorithms presented are general, regardless of the
projection. To adapt an algorithm to a specific projection we can either include
an extra coordinate transform (e.g., frustum to cube, or cone to periodic cube)
or we can reformulate the algorithm directly for the new geometry.

In the rest of the presentation we use this canonical projection of the unit cube
onto the unit square to simplify comparison and presentation of algorithms
for volume rendering. Denote the directional volume emission rate in the z
direction by g(x, y, z), then the image radiance is

f(x, y) =

1∫

0

g(x, y, z) dz. (5)

The challenge is to compute a representation of f on the grid of image pixels as
quickly as possible (for our purposes, quickly means using as few evaluations
of g as possible) for a specified error in the approximation of f .

To further simplify the discussion, we consider the analogue of (5) for a two-
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dimensional directional volume emission rate. Then the radiance is

f(x) =

1∫

0

g(x, z) dz, (6)

where the image now is a one-dimensional function, f(x). This lower dimen-
sional problem is only introduced for clarity in the presentation of the ideas
behind the different volume rendering algorithms. Later on, the numerical re-
sults are presented for the full three-dimensional problem (5). The pixels then
are intervals on the x-axis, and pixel i’s irradiance is

fi =

xi∫

xi−1

f(x) dx =

xi∫

xi−1

1∫

0

g(x, z) dz dx, (7)

an integration over the rectangle [xi−1, xi] × [0, 1] in the xz-plane, shown in
Figure 4.

Fig. 4. The area of integration corresponding to a pixel’s irradiance for the model
problem with a two-dimensional directional volume emission rate. This corresponds
to a one-dimensional image defined in (6).

We now consider the two approaches, LOS (3) and VOL (4), for computing
the pixel irradiance (7). A straight forward computation with the LOS in the
center of the pixel and a uniform step length in the z-direction results in the
leftmost tiling of the unit square shown in Figure 5. Each fi is computed by
numerical quadrature along the z-axis. It is easy to improve (in terms of accu-
racy for a given number of evaluations of the directional volume emission rate)
on this basic LOS algorithm. First of all we can use a numerical integration
with adaptive step length in the z-direction. Secondly, we can use several LOS
for each pixel (super sampling [4]). A tiling using these two improvements is
shown in the middle of Figure 5. The drawback of the LOS approach is that
we can never achieve an optimal tiling (function representation) for functions
that have small regions where there are large changes in the directional vol-
ume emission rate. The limitation of using LOS forces us to have several LOS
close to each other even in regions where the function is smooth.

By using a wavelet-based hierarchical representation, we can achieve refine-
ment in the representation only in the regions where the function has large
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Fig. 5. Different algorithms for solving the model problem with a two-dimensional
directional volume emission rate 6 can be illustrated by different tilings of the unit
square. From left to right we have; a standard uniform step length LOS integra-
tion, an adaptive step length LOS integration with several LOS per pixel, and a
hierarchical representation of the function.

variations. A quad-tree example is shown rightmost in Figure 5. The idea is to
first build the representation, top-down (coarse to fine grid), then project it
onto a lower dimensional hierarchical representation in the image plane, and
finally transform to pixel irradiances, fi. This is the chosen approach in this
work, and there are several advantages. The total work is proportional to the
number of cells, Ns, in the representation, and the errors of the computed fi:s
are automatically controlled by a threshold parameter, ε. The representation
will be generated by conservative subdivision, a transform that is described
in the next section. We then present the full algorithm in detail.

2.1 A Sparse Hierarchical Function Representation

First we present a short introduction to conservative subdivision, following
Donoho [2]. This is sometimes called average-interpolating subdivision but
the former name seems more informative. We define cell averages of a one-
dimensional function u(x) as

uj,k =
1

∆x

xj,k+1/2∫

xj,k−1/2

u(x) dx.

Here j denotes scale and k position, i.e. xj,k = 2−jk. The cell size is ∆x =
xj,k+1/2 − xj,k−1/2.

If we, given cell averages on a coarser scale uj,k, want to find cell averages on a
finer scale uj+1,k (half the cell size) we find the (unique) quadratic polynomial
that has integrals uj,k−1, uj,k and uj,k+1; and then find uj+1,2k and uj+1,2k+1

by integrating the quadratic. By repeating this recursively we can achieve a
representation on an arbitrarily fine scale. We can also use higher order, even,
polynomials. Increasing the order of the polynomial will increase the work, but
improve compression of smooth solutions. Boundaries are easily handled by
the transform, we simply use the closest available quadratic. The subdivision
is very fast (a few arithmetic operation for splitting a cell in two).
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If we want to do the opposite, go from a fine uj+1,k to a coarse grid uj,k. We
have no choice due to conservation,

uj,k =
1

2
(uj+1,2k + uj+1,2k+1) .

Now the difference between original cell averages uj+1,k and averages computed
by subdivision from the coarser scale uj,k can be viewed as wavelet coefficients
(or details)

dj,k = ũj+1,2k − uj+1,2k

where ũj+1,2k is the prediction, computed by subdivision.

To construct a sparse hierarchical representation we threshold the wavelet
coefficients, i.e. we remove a coefficient if |dj,k| < ε. In practice we start at
a coarsest scale and stop the transform when |dj,k| < ε for a cell. This then
corresponds to a tree representation (a binary tree with the Ns cells as leafs).
The extension to higher-dimensional Cartesian grids is straight forward. In
two-dimensions, at each level, we subdivide along rows, then along columns
and stop if the magnitude of all three wavelet coefficients < ε. This gives
us a quad-tree, and is illustrated in Figure 6. In three-dimensions we use an
oct-tree.

Fig. 6. An illustration of a sparse function representation on a three level hierarchy of
two-dimensional grids. The cells corresponding to significant coefficients are shaded.
The total number of significant coefficients, Ns, is 22 in this example.

Given the three-dimensional sparse hierarchical function representation, we
now reduce the dimension of the representation by one. This is done by
a projection along one of the coordinate axes and results in a new, lower-
dimensional, sparse hierarchical representation. This operation is particularly
simple since our representation consists of cell averages. We simply project
each of the levels separately to get the lower dimension representation, as il-
lustrated in Figure 7. Due to the linearity of the transform this projection
is exact, in the sense that an inverse transform to the finest grid, followed
by a projection, gives exactly the same result, as a projection followed by an
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Fig. 7. The projection of a sparse two-dimensional hierarchical representation onto
a one-dimensional one. Finally, we subdivide or sum, to get the pixel irradiance.

inverse transform. After this projection, we subdivide or sum the cells in the
representation, depending on if the cell size is larger or smaller than the pixel
size, to arrive at the pixel irradiances, fi.

An implementation of the method has some options. First of all, we can choose
the quadrature rule used for computing cell averages when constructing the
sparse representation. There is a trade-off between the number of function
evaluations and the accuracy of the approximation. In all numerical examples
we have used the midpoint rule, where the cell average is approximated by
the function value at the center of the cell. A disadvantage is that there is
no reuse of function values from coarser levels. Using for example the three-
dimensional version of Simpson’s rule [18], all function evaluations can be
reused on a finer level, as shown in Figure 8. Secondly, we can increase the

Fig. 8. A two-dimensional illustration that function evaluations can be reused for the
multi-dimensional version of Simpson’s quadrature rule. Solid circles denote points
where the function is evaluated. Circles denote evaluation points at the next finer
level.

order of the subdivision rule that we use, i.e. the order of the polynomial that
define the subdivision. In our numerical experiments, we have used quadratic
subdivision. The order should match the order of the quadrature rule. Also,
more general, we can use other methods than conservative subdivision for
subdividing a cell.

There are several reasons why conservative subdivision is a transform that
is well suited to volume rendering applications. The conservation property is
natural, since the directional volume emission rate is a quantity that should
be preserved between scales. The conservation property also makes fast and
exact projection (splatting) possible. Also, the transform is simple. The main
advantages of the hierarchical method for volume rendering are that:

• Total work and memory requirement is proportional to Ns.
• Accuracy is specified by a threshold parameter, ε.
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• Progressive rendering is possible, i.e. coefficients can be projected ordered by
their size. This means that an initial coarse image can be gradually refined.

But if the function is equally smooth everywhere the method will require the
same amount of work as a uniform grid method, since the representation will
be a uniform grid. The sparser the representation is compared to a uniform
grid on the finest level, the more we save (when Ns � N). A restriction is
that the coarsest grid must be fine enough to allow the refinement to capture
small features.

These advantages of such a hierarchical representation were also exploited for
solving time-dependent partial differential equations in [10], and especially the
conservation property in [11].

A drawback of the proposed method is that only projections along the co-
ordinate axes are fast. This is due to the fact that the representation can
only be projected directly along these axes. A projection along any other di-
rection would require the computation of basis function footprints. Thus, as
mentioned in the Introduction, the method is best suited for the case when
one wants to generate one image for a given directional volume emission rate
function.

3 Numerical Experiments

To verify and illustrate the performance of the proposed method we solve the
canonical problem (5) using the hierarchical method (VOL) and the standard
line of sight integration (LOS). The performance measure will be the maximum
error in the rendered image (relative to the maximum value), as a function
of the number of evaluations of the directional volume emission rate function.
As a test function we use

f(x, y, z) = (sin(5x) sin(7y) sin(11z)/10)2 (8)

+e−α(x−
√

2/3)
2
/
√

2−α(y−
√

7/5)
2√

2−α(z−
√

6/5)
2√

3,

on the unit cube, a smooth function with a peak. The width of the Gaussian
was chosen as α = 100. We note that the width of this peak will influence the
comparison between the methods. The sparse VOL method will be favored by
a narrow peak (large α) since it only refines the representation close to the
peak. On the other hand, if the function is equally smooth everywhere, VOL
reduces to the standard LOS method. The value of α used here results in a peak
that is reasonably broad, as can be seen in Figure 9, where the result for the
hierarchical method is compared to the exact solution for a 64×64 pixel image.
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Note that only 4032 function evaluations (less than one per pixel) gives a 6%
error. Thus, for generating images that are almost indistinguishable, visually,

Fig. 9. The reference, 64×64 pixel, image to the left, and a hierarchical image to
the right, using 4032 function evaluations (less than one per pixel). The relative
maximum error is 6%. The directional volume emission rate function is given in (8).

a very modest number of evaluations of the directional volume emission rate
function are needed.

Now, using VOL, we can vary the error by changing the threshold parameter,
ε, thereby of course changing the number of function evaluations. In Figure 10
the error as a function of the number of function evaluations is compared for
LOS and VOL. We see that VOL is about an order of magnitude faster than
fix step LOS. The error is 1% using 20 000 function evaluations (5 per pixel).
For LOS, we used super-sampling, i.e. 1, 4 and 16 number of lines of sights per

Fig. 10. Relative maximum error for the sparse hierarchical method (VOL) and
the line of sight method (LOS) as a function of the number of evaluations of the
directional volume emission rate function.
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pixel. Note that the error curve is almost linear for VOL in this diagram, over
the whole span of errors, from 0.35 to 0.0004. Thus, by varying the threshold,
we can achieve any required accuracy. From the slope of the line, the order of
VOL seems greater than for LOS, so the gain of using VOL will be larger the
higher the wanted accuracy is. That the accuracy is directly controlled by the
threshold parameter, ε, is illustrated in Figure 11, where we have the error as
a function of ε.

Fig. 11. Relative maximum error for the sparse hierarchical method (VOL) as a
function of the specified threshold value, ε.

Thus, not only does the sparse representation use almost an order of magnitude
less function evaluations to achieve the same error, the error is also decreasing
faster when we use more evaluations. We can also note that by adjusting ε we
can trade error for speed over a large range, as shown in Figure 11.

4 Conclusions

There are many advantages of using a sparse, hierarchical, representation of
the directional volume emission rate function for volume rendering. First of
all, the number of needed coefficients in the representation can be minimized,
since the representation is adapted to the function. Secondly, the error can be
controlled by a threshold parameter, enabling a direct trade-off between time
and error. Also, the representation enables progressive rendering. Yet another
advantage is that the method is directly applicable to higher dimensional prob-
lems. For example, in scientific applications there is often the extra dimension
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of energy. The method then uses a projection of a four-dimensional sparse rep-
resentation onto a three-dimensional sparse representation. The advantage of
using conservative subdivision for the representation of the directional volume
emission rate is that the projection onto the lower dimensional representation
(in the image plane) is trivial (and exact) for this specific representation. We
emphasize again that the number of operations for the whole rendering prob-
lem is proportional to Ns, the number of coefficients in the representation,
with a small constant.
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