Are Computer Simulations Science?

Mats Holmstrom

Docent Lecture
14 October 2004



Overview

* Traditional physics <« Computer simulations
* Problems with current practices?
* Suggestions for solutions



Traditional Physics Research

* Hard sciences: Reproducibility

- External reality
- Simple physical laws
- Independence of the observer

* The scientific method: Theory «— Experiment



Stages

Space Physics example

World Model H Algorithm Implementation

Solar wind-planet Magnetohydrodynamics Finite volumes Fortran
interaction (MHD) MPI



Reproducibility in Computing

Difficulties:

* For one program:
Changing environment. All must be known.

* For many programs: We will focus on this.

* Results are often reproduced for different set of
parameters/conditions

* The situation (Bruckheit et al.):

* Researchers cannot reproduce others work
* Advisors cannot investigate student's problems
* Researchers cannot reproduce their own work
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Comparison of Energetic Neutral Atom Production
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How Accurate Is Scientific Software?

. Les Hatton and Andy Roberts

Abstract— This paper describes some results of what, to the
authors’ knowledge, is the largest V-version programming ex-
periment ever performed. The object of this ongoing four-year
study is to attempt to determine just how consistent the re-
sults of scientific computation really are, and, from this, to
estimate accuracy. The experiment is being carried out in a
branch of the earth sciences known as seismic data process-
ing, where 15 or so independently developed large commercial
packages that implement mathematical algorithms from the same
or similar published specifications in the same programming
language (Fortran) have been developed over the last 20 years.
The results of processing the same input dataset, using the
same user-specified parameters, for nine of these packages is
reported in this paper. Finally, feedback of obvious flaws was
attempted to reduce the overall disagreement. The results are
deeply disturbing. Whereas scientists like to think that their
code is accurate to the precision of the arithmetic used, in this
study, numerical disagreement grows at around the rate of 1% in
average absolute difference per 4000 lines of implemented code,
and, even worse, the nature of the disagreement is nonrandom.
Furthermore, the seismic data processing industry has better
than average quality standards for its software development with
both identifiable guality assurance functions and substantial test
datasets. Comparing the results reported here with other work by
Hatton showing broadly similar statically detectable fault rates in
software from different disciplines gives strong indications that
the software realisations of work in other scientific fields may
be a great deal less accurate than many would believe. Against
this backdrop, the authors believe that little progress will be
made in some sciences until the problem is reduced, particularly
in remote sensing, where the answer is generally inaccessible to
direct measurement. To this end, the feedback experiments that
formed part of the study proved valuable, resulting in significant
reductions in disagreement.

for example, that resolution (say, around 0.001% in typical
floating point formats) and accuracy are synonymous—the
widespread use of double precision in some sciences is in-
dicative of the accuracy expectations. The software testing
procedures used are left entirely to the authors of the scientific
work. Regrettably, as we shall see, scientists are no more
successful at wnting reliable software than anyone else.

This paper attempts to analyze the scale of the problem in
two distinct ways. First, the results of static fault analysis for
many different application areas [1] are briefly reviewed. The
object of this parallel study was to see if different scientific
application areas tended to have the same programming lan-
guage problems or whether certain areas exhibited a greater or
lesser susceptibility than the average to the inadvertent misuse
of programming language.

Second, the results of analyzing one particular application
area, that of seismic data processing, is studied in depth. This
particular application area is probably unigue in scientific com-
putation in that it has remained both a highly competitive and
a mature environment. During the last 30 years or so, some 15
to 20 proprietary packages with several recognisably different
architectures have been developed in effective isolation from
each other, all ostensibly doing the same thing. During this
time, new algorithms have been added and old ones have been
rewritten to take advantage of advances in either hardware
or software. The authors have chosen to refer to this as an
N-version experiment, although there appears to be some
controversy over this nomenclature. Here the authors mean
the rommparenn of oteute of N eofrware packaocse wrettasn b
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Fig. 2. An example of the final output of a seismic data processing sequence as analyzed by the geologist. The black lines correspond essentially to
echoes from strata within the earth and give valuable information concerning the stratigraphy. The horizontal scale is distance along the surface of the
earth apd the wvertical scale is echo travel time.
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Fig. 10. A collage of the nine different identically processed end-products (calibration point 14) as would be analyzed by a geoscientist. It would be nice
to find that they agree to within the single-precision floating-point anthmetic used, i.e., around 0.001%. In practice, differences amount to around 100000 1o
1 000000 times worse than this. Note that the bortom right cross-section represents the average of all the nine individual cross-sections. Horizontal stripes are
timing lines and are the same on each and the vertical stripes correspond to areas of gross departure and have been statistically tnmmed.



Reliability in Computing

* Reproducibility does not imply reliability

* Reliable software if
it always does what is expected of it.

Problems:
- bugs

- numerical inaccuracy/instability
Traditional numerical analysis: Stability, round-off,...



Reliability — an Example:
Charge Exchange in the Martian Exosphere
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Figure 5. Exosphere radial velocity contours in equatorial cut for two cases: (left) primary exosphere
(PRE) and (right) charge-exchanged exosphere (CELSPE). The Mars-Solar-Ecliptic coordinate system is
used.

JGR, v108, A10, 2003.



Debate

* "Physics computing is easy, and therefore reliable”
* Counter example: Binary search



Binary Search

e Problem:

* Determine if the sorted array x[0..n-1] contains the
target element r. The answer is stored in p.
If #is not in the array, p is -1.

* Solution by binary search

t=1:
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Binary Search

* 10% of professional programmer can implement this
without errors in a couple of hours (Bentley)

* The first binary search was published in 1946.
The first binary search without bugs was published in
1962 (Knuth)



Current Physics Practice

Software usage:
e External software

* Public scientific programs
(by large communities or small groups)

e Reuse of numerical results
e Unshared resources



Testing

* Usually only by global validation
(exceptions: large libraries)

e Comparison with approximation, previous
calculations, and experimantal data

* Consistency with conservation laws (mass,
energy, ...)

e Peer review

Bug management unusual



Open source code?

Why keep the source code secret?
* Work

* Fear

e Control

e Commersial value

* No benefits

Valid reasons, but not in tune with science



Iteration Control Structures. To prove the correctness of a loop we must establish
three properties:

Initialization

Preservation A Invariant }

! Termination

We first argue that the loop invariant is established by initialization, and then show
that each itergtionpreserves its truth. These two steps show by mathematical induc-
tion that t s true before and after each iteration of the loop. The third step
1S to argue thi tnever execution of the loop terminates, the desired result is true.
Together these establish that if the loop ever halts, then it does so correctly; we must
prove that it does terminate by other means (the halting proof of binary search used a

typical argument).
Functions. To verify a function, we first state its purpose by two(assertions,) Its

precondition 1s the state that must be true before it is called, and its pos Tition 1s
what the function will guarantee on termination. Thus we might specify a C binary

search function as follows:

int bsearch(int t, int x[], int n)
/+ precondition: x[0] <= x[1] <= ... <= x[n-1]
postcondition:
result == -1 => T not present in x
0 <= result < n => x[result] ==

«/



Suggestions for solutions

Publish source code and parameter settings
Write specifications

Use source code control systems

Testing

— Perturbed parameters and initial conditions
- Automated testing

- Automated generation of figures in publications:
Reproducible research

— Use assertions and invariants in the code



Are Computer Simulations Science?

They can be...
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