Energetic neutral atoms as the explanation for the high velocity hydrogen around HD 209458b

M. Holmström¹, A. Ekenbäck¹, F. Selsis², T. Penz³, H. Lammer⁴ and P. Wurz⁵

1. Swedish Institute of Space Physics, Kiruna, Sweden
2. Centre de Recherche en Astrophysique de Lyon (CRAL) and Ecole Normale Supérieure (ENS), Lyon, France,
3. Istituto Nazionale di Astrofisica,
 Osservatorio Astronomico di Palermo Giuseppe S. Vaiata, Palermo, Italy,
4. Space Research Institute, Austrian Academy of Sciences, Graz, Austria,
5. University of Bern, Switzerland

IAU253, Boston
May 23, 2008

matsh@irf.se
www.irf.se/~matsh/
Overview

- The Hubble observation of H around HD 209458b
- Energetic neutral atoms (ENAs)
- Model of ENA production at HD 209458b
- Comparison of model results and observations
- Stellar wind estimates
- Current work
Figure 2 The HD209458 Lyman α profile observed with the G140M grating.
Energetic Neutral Atoms (ENAs)

The Solar Wind

Electron Neutral Atoms (ENAs)

Magnetized Planets

Electron Neutral Atoms (ENAs)

ENA Production by Charge-Exchange

Non-Magnetized Planets

[Kivelson and Russel]
ENA Observations in the Solar System

ENAs from charge-exchange between solar wind protons and exospheric hydrogen has been observed at all planets where suitable ENA detectors were present:

- At Earth by IMAGE
- At Mars by Mars Express
- At Venus by Venus Express
An Historical Note

- Lyman-alpha observations in the 1960s showed hot hydrogen coronae at Mars and Venus (up to 700 K)
- In situ spacecraft observations later found exospheric temperatures of 210 and 270 K
- The discrepancy was eventually explained by photochemically produced energetic particles, and by ENAs, produced by charge exchange between energetic solar wind protons and the planetary exosphere
Can Energetic Neutral Atoms (ENAs) Explain the Observation?
Illustration of the geometry

Planet centered coordinate system. x-axis is planet-star line

0.045 AU
Fig. 7. Alfvén Mach number (solid line) and plasma-β (dashed line) of the stellar wind model in dependence of the distance in AU from the star. The locations of the simulated planets are marked with dotted lines.
A model of the ENA production at HD 209458b

- Hydrogen atoms launched from an inner boundary
- Stellar wind protons inflowing
- Charge-exchange outside an obstacle
- Forces on an H atom:
 - gravity (planet), coriolis force
- Events for an H atom:
 - charge exchange with a proton (ENA production)
 - elastic collision with another H atom
 - photon collision (radiation pressure)
 - photoionization
Some Constants and Parameters

Table 1: Default values of physical parameters, and values of constants used in the simulations, unless otherwise noted.

<table>
<thead>
<tr>
<th>Name</th>
<th>Symbol</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Star radius</td>
<td></td>
<td>$7.0 \cdot 10^8 \text{m}$</td>
</tr>
<tr>
<td>Planet radius</td>
<td>R_p</td>
<td>$9.4 \cdot 10^7 \text{m}$</td>
</tr>
<tr>
<td>Planet mass</td>
<td></td>
<td>$1.3 \cdot 10^{27} \text{kg}$</td>
</tr>
<tr>
<td>Orbital distance</td>
<td></td>
<td>$6.7 \cdot 10^9 \text{m}$</td>
</tr>
<tr>
<td>Orbital velocity</td>
<td></td>
<td>$1.4 \cdot 10^5 \text{m/s}$</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>ω</td>
<td>$2 \cdot 10^{-5} \text{rad/s}$</td>
</tr>
<tr>
<td>Inner boundary radius</td>
<td>R_0</td>
<td>$2 \cdot 10^8 \text{m}$</td>
</tr>
<tr>
<td>Inner boundary temperature</td>
<td></td>
<td>$0.7 \cdot 10^4 \text{K}$</td>
</tr>
<tr>
<td>Inner boundary density</td>
<td>n</td>
<td>10^{14}m^{-3}</td>
</tr>
<tr>
<td>H-H crosssection</td>
<td></td>
<td>10^{-21}m^2</td>
</tr>
<tr>
<td>H-H$^+$ crosssection (energy dependent 5)</td>
<td></td>
<td>$\approx 2 \cdot 10^{-19} \text{m}^2$</td>
</tr>
<tr>
<td>UV absorption rate</td>
<td>τ_r</td>
<td>0.35s^{-1}</td>
</tr>
<tr>
<td>Photoionization rate</td>
<td>τ_i</td>
<td>$7 \cdot 10^{-5} \text{s}^{-1}$</td>
</tr>
<tr>
<td>Obstacle standoff distance</td>
<td>X_0</td>
<td>$4 \cdot 10^8 \text{m}$</td>
</tr>
<tr>
<td>Solar wind density</td>
<td></td>
<td>$2 \cdot 10^9 \text{m}^{-3}$</td>
</tr>
<tr>
<td>Solar wind velocity</td>
<td>u_{sw}</td>
<td>$0.5 \cdot 10^5 \text{m/s}$</td>
</tr>
<tr>
<td>Solar wind temperature</td>
<td>T_{sw}</td>
<td>$1 \cdot 10^6 \text{K}$</td>
</tr>
</tbody>
</table>

Stellar wind velocity and temperature

$u_{sw} = 50 \text{ km/s}$

$T_{sw} = 10^6 \text{ K}$
Average H Velocity Spectrum (along x-axis)
Attenuation

- Columns along x-axis in a grid in front of the star
- Attenuation spectrum computed for each column
- Average attenuation for each velocity is computed
- This attenuation can then be applied to the out-of-transit observed spectrum, and compared to the in-transit spectrum
Modeled Spectrum

Holmström et al.,
No charge exchange

Figure 3: The attenuation spectrum with no ENA production and a larger radiation pressure corresponding to a photon collision rate of 1.4 s^{-1}.
Stellar wind velocity

100 km/s

0 km/s

Figure 4: The attenuation spectrum (a) and velocity spectrum (b) for a 100 km/s stellar wind, and the attenuation spectrum (c) and velocity spectrum (d) for a 0 km/s stellar wind.
Figure 7: The attenuation spectrum for an increased obstacle distance of $6 \cdot 10^8$ m.
Current work

- Incorporate a slowed down/deflected stellar wind in the model (by reflections of the particles on the obstacle). Then a higher stellar wind velocity gives the best fit to the observation.

- Can the size of the stellar wind obstacle be inferred? Would allow estimate of the planet's magnetization. We cannot separate the effects of stellar wind density, exospheric parameters, and obstacle distance. However, assuming realistic ranges of these parameters we can maybe derive upper and lower bounds on the distance from the planet to the obstacle.
Conclusions

- Energetic Neutral Atoms (ENAs) can explain the observed Lyman α absorption

- **Stellar wind properties** can be inferred from Lyman α observations through ENAs

- Plasma processes should be considered in exoplanet investigations