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Abstract. In the present work wavelet transform meth-
ods together with principal component analysis and
non-linear filtering are used to extract the deterministic
components in AGN X-ray variability from the photon
event history files. The photon history files are converted
into so called ampligrams using the Morlet wavelet
transform. The ampligram may be considered as an
analogy to signal decomposition into Fourier components.
In that case different components correspond to different
frequencies. In the present case different components
correspond to different wavelet coefficient magnitudes,
being equivalent to spectral densities. In addition to
the ampligram a time scale spectrum is defined, being
a forward wavelet transform of each row (wavelet co-
efficient magnitude) in the ampligram. The time scale
spectrum of the ampligram tells us more than the original
wavelet spectrum does. The time scale spectrum reveals
individual signal components and indicates the statistical
properties of each component: deterministic or stochastic.
The ampligram and its time scale spectrum seems to be
a useful tool to study processes resulting in a mixture of
stochastic and deterministic components. In the case of
X-ray luminosity variations in the AGN it is expected
that the described data analysis technique will provide a
conclusive proof of the existence of building blocks. The
efficient decomposition of the luminosity variation data
may be used to study the deterministic, quasi-periodic
phenomena, like tones and chirps. The most important
point of the method is that it may be used to remove
the influence of the Poisson statistics in the photon data
and in this way to extract real deterministic luminosity
variations. As it is shown by simulations in the final part
of this work, the method is capable to extract weak, of the
order of few percent, deterministic variations embedded
in a totally Poisson-like series of events. There may be
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also other applications of the method in astrophysics, for
example to study X-ray pulsars.
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1. Introduction

There is some evidence that X-ray photons from
astronomical sources can not be fully described by
a Poisson process. There seems be a deterministic
modulation of the photon series which is reflected
in observed wavelet spectra of photon counts. The
following experiment may be performed using the pho-
ton event data in order to test the above statement:
Let us select 5 consecutive photon events observed
at instants: t1, t2, t3, t4 and t5. Let assume that the
occurrence of a photon at t3 is conditioned by occurrences
at preceding instants t1, t2 and following instants t4
and t5. Using a large population of sets of 5 consecutive
photons it is possible to create a statistical model of
the photon train using, for example, the neural network
technique. That technique, being a kind of a non-linear
interpolation, has been used to reconstruct uniformly
sampled data, even when many data points were missing
in an observed chaotic process (Liszka 1996).

If the photon data would follow a true Poisson process,
it would be impossible to create such a model. However, it
has been found, that even a simplest model consisting of
a single back-propagation network, could be trained with
rms errors usually less than 30%. This means that the con-
ditional probability of a photon event at t3, conditioned
by photon events at t1, t2, t4 and t5:

P (t3|t1, t2, t4, t5) > 0. (1)
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Fig. 1. Two examples of prediction of photon events at t3 for
photon data from NGC 4051 observed by the ROSAT satellite.
t3 is expressed in seconds counted from t1

The above fact is an indication that the photon events do
not follow a Poisson process. In a true Poisson process it
would be impossible to predict the occurrence of an event
at t3. Two examples of prediction of photon events at t3
for photon data from NGC 4051 observed by the ROSAT
satellite are shown in Fig. 1. A single back-propagation
neural network with 9 processing elements in the hidden
layer has been used to construct a model of the photon se-
ries. Using a more complex model of hybrid type (Liszka
1996) it would be possible to obtain even better prediction
accuracy (cf. Fig. 1).

Another proof for deterministic variations of the pho-
ton series is the fact that if the image is divided into two
or four equal parts, variations of photon counts in indi-
vidual parts are correlated. An example of photon-count
variations in NGC 5548 recorded by the ROSAT satellite
(ROR 701242) in two halves of the image is shown in
Fig. 2.

However, it would also be the case if variations would
be imposed by the measuring instrument. In such case the
short time variations of different sources in the same im-
age would be correlated. This type of correlation has not
been found, see an example in Fig. 3.

The conclusion of the above experiments is that the
short-term variations of photon counts recorded by the
satellite contain deterministic information, most likely
corresponding to intensity variations of the source itself.

In the case of X-rays from AGN there is probably a
physical source of deterministic variations of the photon
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Fig. 2. An example of photon-count variations in NGC 5548
(ROR 701242) in two halves of the image. Photon energies
< 0.5 keV, 2 second sampling bins
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Fig. 3. An example of photon-count variations in NGC 5548
(ROR 701242) (upper graph) together with simultaneous vari-
ations of another source in the same image

flux. It seems that there are individual physical luminosity
producing events in the AGN source itself which together
constitute the X-ray light curve. There are two proposals
for the nature of these elementary events. Pacholczyk
& Stoeger (1994) propose “building blocks” in the
X-ray photon flux from active galactic nuclei resulting
from ballistic events due to smaller black holes passing
through the accretion disk of the largest black hole in
the cluster. Another proposal about the nature of these
events is that they may be magnetohydrodynamic flares
in the accretion disk around a single supermassive black
hole (De Vries & Kuijpers 1992).

In the present study we discuss methods to extract
the deterministic component from the photon event
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Fig. 4. The wavelet scalogram for NGC 5548 (ROR 701246),
photon energies > 0.5 keV. The vertical axis shows logarithm
of time scales in s

histories. These methods are described in the remainder
of the paper. It will be shown that wavelet spectra
seem to be a useful tool to study the short-term tem-
poral variations in the photon counting rate, even in
cases of very low counting rates. Here we shall employ
wavelet transform methods together with principal
component analysis and nonlinear filtering to extract
the deterministic components in AGN X-ray variabil-
ity. The methods may be useful for understanding
the dynamics of X-ray photon-count fluctuation. In
the present paper the data analysis will be illustrated
using a photon event history file from NGC 5548
(ROR 701246) and from the X-ray pulsar 1E2259+586
(ROR 400314), both for photon energies > 0.5 keV. The
wavelet scalogram for NGC 5548 (ROR 701246) is shown
in Fig. 4.

2. Wavelet transform

The wavelet transform has become a powerful tool for
frequency analysis, in particular for non-stationary time
series. Discussions of the wavelet transform and its ap-
plications can be found in a number of recent books and
review articles (Daubechies 1992; Chui et al. 1994; Farge
1992). The wavelet transform of a function y(t) is defined
as (here ∗ denotes complex conjugate):

w(a, b) = a−
1
2

∫ +∞

−∞
y (t) g∗ ((t− b) /a) dt (2)

where variable a is the scale dilation parameter and b the
translation parameter. Both parameters are dimension-
less. The real- or complex-valued function g(t) is called a
mother (or analyzing) wavelet. Here a particular wavelet
transform, the Morlet wavelet, will be used. The Morlet
wavelet, being a locally periodic wave-train, is related to

windowed Fourier analysis. It is obtained by taking a com-
plex sine wave, and by localizing it with a Gaussian (bell-
shaped) envelope. The Morlet wavelet is defined as:

g(t) = exp
(
iω0t−

t2

2

)
(3)

and its Fourier transform:

G(ω) =
√

2π exp

[
− (ω − ω0)2

2

]
· (4)

The Morlet wavelet gives the smallest time-bandwidth
product (Lagoutte et al. 1992). ω0 is a phase constant
(in the present study ω0 = 5). For large ω0 the frequency
resolution improves, though at the expense of decreased
time resolution. The dilation parameter may be consid-
ered as equivalent to the frequency of the analyzed signal,
while the translation parameter corresponds to the time
elapsed along the analyzed sample. In practice, for analyz-
ing a discrete-time signal y(ti) we sample the continuous
wavelet transform on a grid in the time-scale plane (b, a)
by choosing a = j and b = k where j and k are integers.
That is we compute wavelet coefficients

wj,k = j−1/2

∫ ∞
−∞
y(t)g∗ ((t− k)/j) dt (5)

where 1 ≤ j ≤ J and 1 ≤ k ≤ N . The integral in (5) is
approximated using the discrete-time signal y(ti).

Since the wavelet transform is an over-complete repre-
sentation of the original signal (a one-dimensional signal
is transformed to the two-dimensional plane) there are
many possibilities for reconstructing the signal. One way
is to use a discrete version of Morlet’s formula

y(b) = c

∫ ∞
−∞
w(a, b)

da
a3/2

. (6)

Note that the original signal’s low-pass (DC) component
is lost in the transform.

In the present study dilation number 1 corresponds to
the highest frequency (a half of sampling rate). The high-
est dilation number corresponds to the lowest observable
frequency.

3. Time-series decomposition using wavelet transform

Many time series observed in physics consist of a deter-
ministic part with a superimposed stochastic component.
A powerful technique to separate both components
has been proposed by Farge & Philipovitch (1993) and
implemented in a practically usable software by Wernik
& Grzesiak (1997). In that method, being a kind of non-
linear filtering, called also the threshold filtering, a wavelet
frequency spectrum of the time series is calculated. The
time series is decomposed into two parts in the following
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way:

– A deterministic “strong” part is obtained by setting to
zero all wavelet coefficients less than a certain thresh-
old level. The inverse wavelet transform is used to cal-
culate the corresponding time series.

– A stochastic “weak” part is obtained by setting to
zero all wavelet coefficients greater than that threshold
level. The inverse wavelet transform is also used here
to calculate the corresponding time series.

– New wavelet spectra are calculated for each partial
time series.

Signal discrimination using the magnitude of wavelet coef-
ficients as a discrimination criterion would correspond to
discrimination with respect to the spectral density when
using the Fourier transform. The stochastic part must fol-
low a Gaussian probability distribution function. As a
measure of departure from a Gaussian distribution the
kurtosis is used. If the threshold is properly selected, the
integral of the kurtosis of the stochastic part over the en-
tire frequency range reaches a minimum.

In the present problem the method will be applied in
the opposite manner. In the case of a photon train, reach-
ing the measuring instrument at a low rate, there will be
a dominating Poisson statistics modulated with a weak
deterministic component. A low threshold will then be
used to separate a weak, deterministic component from a
strong, Poisson component.

4. The ampligram

There is a straightforward generalization of the above
technique, which may be used to separate independent
components of the signal, assuming that the different
components are characterized by different wavelet coeffi-
cient magnitudes (spectral densities). The experience from
studies of oscillations in complex mechanical systems in-
dicate that a given oscillation mode usually occurs with
a certain amplitude/spectral density. The amplitude ra-
tios between possible modes are usually constant in such
a system. That observation may be used to generalize the
above non-linear filtering technique. For a discrete-time
signal y(ti) the following operations are performed

1. Wavelet transform y(ti). This results in a complex
J ×N matrix W = {wj,k}.

2. Instead of using the low-pass or high-pass filtering of
wavelet coefficient magnitudes, as described in Sect. 3,
a kind of band-pass filtering of wavelet coefficient mag-
nitudes is used.
Find the maximum magnitude among the wavelet co-
efficients,

|W | = max
j,k
|wj,k|.

Define L magnitude intervals

Il = [(l − 1)∆w, l∆w] , l = 1, 2, . . . , L (7)

with ∆w = |W |/L.
Construct L matrices Wl, l = 1, 2, . . . , L, such that

[Wl]j,k =
{
wj,k if |wj,k| ∈ Il,

0 otherwise.

3. Inverse wavelet transform Wl to get new time-signals
yl(ti), l = 1, 2, . . . , L. Each yl(ti) is what the signal
would look like if only a narrow range of wavelet coef-
ficient amplitude would be present in the signal.

4. Construct an L×N matrix Y with yl(ti) as rows. This
matrix Y is the ampligram of the original time-signal
y(ti).

Note that if we just want to examine a subset of wavelet
coefficient magnitudes, the construction of the intervals
Il in the above algorithm can be changed, e.g., choosing
∆w = 0.2 |W |/L results in a “low-20” ampligram.

An interesting application of the method is to study
variability of a X-ray pulsar, even using data with low
counting rate. Here, an ampligram of a 1024 seconds sam-
ple from 1E2259+586 taken by ROSAT PSPC instrument
(file number ROR 400314), is shown in Fig. 6. That pul-
sar has been extensively studied (Parmar et al. 1998) by
means of the BeppoSAX satellite. According to the above
reference, the 0.5−10 keV pulse shape is characterized by
a double peaked profile, with the amplitude of the second
peak about 50% of that of the main peak. At the time
when the analyzed ROSAT file was taken, the pulse pe-
riod was about 6.97885 seconds (cf. Fig. 5 of Parmar et al.
1998). In order to construct the ampligram, photons were
counted in 0.24 s bins. The bandwidth of 4% in the wavelet
coefficient magnitude domain was used. The 4% band was
moved in 1% steps over the range 0 − 20% of the maxi-
mum wavelet coefficient magnitude. It may be seen that
7 s pulses cover the range of wavelet coefficient magnitude
between 5 and 14%. The ampligram reveals a semi-regular
pattern of variations of the coefficient magnitude, corre-
sponding to 7 s pulses, with a period of about 100 s. That
period is clearly seen in the bottom of ampligram as an
independent component with coefficient magnitudes less
than 4%.

The summation along colums of the matrix Y should
result in the original sample y (ti), if there would be no
energy leakage from outside the filter band (7). Figure 7
shows results of summation (thick line) of seconds 700−
800 of the ampligram in Fig. 5 together with the mea-
sured data (thin line). It may be seen that the differences
between the observed and reconstructed data are of the
order of 10%, which means that the energy leakage from
outside the pass-band is not very important.

In order to investigate the presence of weak compo-
nents in the signal the low-20 ampligram is a useful tool.
The low-20 ampligram for the data shown in Fig. 5 is
shown in Fig. 8. Another presentation method is used
here. Since all horizontal crossection of the ampligram are
bipolar, the graphical presentation may be simpler if only
positive (or negative) portion of the signal is plotted. Here
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Fig. 5. A total ampligram of a 1024-point sample of photon
counts with a frequency spectrum shown in Fig. 4. Sampling
bin width is 1 s. The color scale is expressed in counts/second
- zero corresponds to the average counts. Columns of the
ampligram matrix are plotted in horizontal direction

Fig. 6. A low-20 ampligram of the X-ray pulsar 1E2259+586,
ROR 400314. Sampling bin width is 0.25 s

only positive portion of the ampligram is plotted for clar-
ity. The color scale shows the natural logarithm of the
amplitude yl (t). The use of logarithmic z-scale enhances
the lowest amplitudes.

The ampligram demonstrate the amplitude and phase
of components of the signal corresponding to different
spectral densities. The ampligram is an useful method
of presentation of the physical properties of the signal.
The signal in Fig. 5 with highest coefficient magnitudes
(40− 100%) is burst-like and random. Regular structures
seem to be dominant below 10% of highest coefficient mag-
nitudes (see Fig. 8). It may be determined whether there
is one or more semi-regular components in the signal. A

Fig. 7. Results of summation (thick line) of the first 5.5 s of
ampligram in Fig. 5 together with the measured data (thin
line)

Fig. 8. The low-20 ampligram of the same data as shown in
Fig. 5. Only positive portion of the ampligram is shown for
clarity, logarithmic z-scale

decomposition technique for an ampligram is discussed in
the following section.

5. Principal component analysis (PCA)

In the case of threshold filtering, described in Sect. 3, the
kurtosis criterion is used to find the optimum threshold
which must be set to separate the deterministic compo-
nent from the stochastic one. In a general case, with sev-
eral components, or with two deterministic components
the kurtosis criterion may be difficult to use. In that case
components may be separated by performing the principal
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component analysis of the ampligram matrix. The prin-
cipal component analysis is a method to resolve a data
matrix into a number of orthogonal components. If the
data matrix is a sample of a multivariate time series, the
principal components, in which the matrix is resolved, re-
flect the independent, orthogonal constituents of the pro-
cess described by the multivariate time series.

Since the ampligram may be considered as a multivari-
ate time series (L = 20, N = 1024 for the above low-20
ampligram) the principal component analysis may be used
to identify the number of independent modes in the data.
A multivariate time series consisting of L variables mea-
sured at N equally separated instants forms a matrix Y .
The next step of the analysis is to perform the principal
component analysis (PCA) of the matrix Y . The results
of PCA are:

– The vector of eigenvalues of the matrix (latent roots
λl), telling how much of the total variance in the ma-
trix may be explained by the consecutive principal
components;

– The matrix of component loadings, being correlation
coefficients between old variables and the principal
components (new variables);

– The matrix a of component score coefficients, a trans-
formation matrix between the old system of M vari-
ables and the principal components (the new coordi-
nate system);

– The matrix S of component scores, with one column
for each principal component, being a projection of old
M variables upon the new coordinate axis (directions
of principal components).

The matrix S of component scores is thus the new mul-
tivariate time series in the principal component space. It
has been found by the present author that, in all cases
when filtering was performed in the principal component
space, a considerable improvement of signal-to-noise ra-
tio has been obtained without distorting the signal. Each
column of S is low-pass filtered using a simple filter. The
result of filtering is matrix Sf . After filtering an inverse
transform:

Yf = Sf · a−1 (8)

is performed resulting in a new version of the matrix Y .
It is possible to combine the filtering procedure with a
decomposition procedure. If one wants to know what the
variations of the M-component vector would be with only
one mechanism (or cause), corresponding to the principal
component l active, it is possible to mask with zeros all
other columns in Sf , except column l and to perform a
calculation of a new matrix Ylf :

Ylf = Sf · a−1. (9)

The operation may be repeated for each interesting com-
ponent l. As the principal component transformation pre-
serves the variance, the sum of all latent roots, λl, is equal

Fig. 9. Component loadings of the principal components PC1 &
PC2 for the ampligram of Fig. 8.X-axis shows variable/wavelet
coefficient magnitude in 1% steps of 20% of its maximum value

to the total variance. If the data is standardized, i.e. nor-
malized to standard deviation for each variable, the sum
of latent roots is equal to number of variables. The mag-
nitude of latent roots is usually expressed in percent of
the total variance. If the data contains only pure noise, all
variables will be uncorrelated, and the total variance will
be evenly distributed between all latent roots:

λl noise(%) =
100%
L

. (10)

The real data, measured or computer simulated, are never
perfectly uncorrelated and the variance will not be evenly
distributed between all latent roots. When all variables are
related to the same common factor there will be one la-
tent root (the first one, corresponding to the first principal
component) significantly larger than the value indicated
by (10).

6. Decomposition into independent modes

The principal component analysis of the ampligram ma-
trix must be performed to identify the number of signifi-
cant independent components in the data. As a result the
matrix of component loadings, being the correlation co-
efficients between significant principal components of the
ampligram and the L rows of the ampligram, is obtained.
An example of component loadings is shown in Fig. 9.
The diagram shows which ranges of coefficient magnitude
between 0 an 20% contribute to the two modes present
in the data of Fig. 8. The mode 1 (dominating) corre-
sponds to coefficient magnitudes 4 − 10% and the mode
2 corresponds to magnitudes of 1 − 4%. The non-linear
filtering is now repeated once for each observed mode, the
bandpass of magnitude is now selected from Fig. 9. The
result, after the inverse wavelet transform, shows time se-
ries corresponding to the significant modes. An example
of decomposed modes is shown in Fig. 10.

7. Time scale spectrum of an ampligram

The ampligram may be used for calculation of average
wavelet spectra, one for each coefficient magnitude. It is
equivalent to performing, once again, the forward wavelet
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Fig. 10. Modes decomposed from the signal of Fig. 8

Fig. 11. Time scale spectra of the total ampligram (left) and of
the low-20 ampligram (right) of the X-ray data from ROSAT,
ROR 701246

transform on the filtered, inverse transformed data, that
constitute the ampligram.

The procedure will generate a 3-D graph showing the
time scale of the signal on the x-axis, the wavelet coef-
ficient magnitude of the original signal, in percent of its
max value, on the y-axis and the wavelet coefficient mag-
nitude (corresponding to the power spectral density) of
the decomposed component as the color scale. A graph of
that kind will show the average properties of the different
modes, if such exist, during the entire sample period.

The algorithm is as follows. Each row of the ampligram
matrix, Y , is wavelet transformed, resulting in L matri-
ces. We then time-average these matrices (average along
rows) leading to L arrays, w̄l, with J elements. Construct
an L×J matrix, Ȳ , with w̄l as rows. This matrix Ȳ is the
time scale spectrum of the ampligram.

Examples of time scale spectra of total ampligrams
(left) and low-20 ampligrams (right) of the data
ROR 701246 are shown in Fig. 11.

The interesting property of this graph is that deter-
ministic periodic or semi-periodic structures in the data
are mapped on the graph as vertically elongated features,
while purely stochastic structures are mapped as horizon-
tally elongated features. That property of the time scale
spectrum may be illustrated as follows: A pure and sta-
tionary sine-like signal will be mapped on the time scale
spectrum as a single dot. Introducing random phase vari-
ations, but without changing the signal amplitude will
broaden the dot in the horizontal direction. On the other
hand, introducing random amplitude fluctuations, with-

Table 1. Time scales present in time scale spectrum of
1E2259+586

No. Explanation T ime(sec) log(T ime)

1 T1 4.17 0.620
2 T 6.98 0.844
3 T + T2 9.79 0.991
4 T + T1 11.14 1.047
5 2 ∗ T 13.96 1.145

out scrambling the phase, will broaden the dot in the ver-
tical direction.

For the X-ray pulsar ampligram of Fig. 6 the time scale
spectrum may be useful to resolve different frequency com-
ponents. Since the pulsar 1E2259+586 has a secondary
maximum, located asymmetrically with respect to the
middle of the period, it may be expected that the scalo-
gram of the photon count series will be quite complex.
According to Fig. 3 of Parmar et al. (1998) the secondary
maximum is approximately 4.17 s (T1) from the preced-
ing main maximum and 2.81 s (T2) from the following
main maximum. With the pulse period T of approximately
6.98 s, time scales of Table 1 may be identified in time scale
spectrum of ampligram of Fig. 6 shown in Fig. 12.

Positions of above components in the time scale spec-
trum are indicated by white lines, numbered as in Table 1.
At least a part of information contained in the occurrence
of those time scale components, together with their rela-
tive intensities may reflect the nature of the process re-
sponsible for the pulsar’s emission.

8. Amplitude distributions of the ampligram and their
entropy

A complementary information may be obtained from the
ampligram constructing a set of amplitude distributions
of yl(ti), one for each level l of wavelet coefficient magni-
tude. For levels with pure stochastic component, Gaussian
amplitude distributions will be obtained. For levels with
deterministic components, broader amplitude distribu-
tions, often revealing structures, will be found. An exam-
ple of distribution plot for ROSAT, ROR 701246 is shown
in Fig. 13. In order to enhance sides of the distributions a
logarithmic probability density scale is used. The ampli-
tudes used to construct the graph in Fig. 13 are normalized
to the maximum value of yl(ti) for each l. It may be seen
that for wavelet coefficient magnitudes between 0.02 and
0.16 the distribution is broadened, which is in agreement
with the part of ampligram where deterministic structures
may be seen.

A useful method to quantify the above observation is to
calculate the distribution entropy for each level of wavelet
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Fig. 12. Short time scale part (t < 16 s) of the time scale spec-
trum of the X-ray pulsar 1E2259+586, ROR 400314. Vertical
lines indicate position of different time scale components shown
in Table 1. The logarithm of the time scale is displayed on the
x-axis

Fig. 13. An amplitude distribution graph for the ampligram in
Fig. 8. (ROR 701246). The horizontal scale shows the normal-
ized amplitude, vertical scale shows fraction of the maximum
wavelet coefficient magnitude and the color scale shows the
logarithm of the relative occurrence frequency

coefficient magnitude. The distribution entropy, El, is cal-
culated as:

El = −
∑
i

pil ln pil, i = 1, 2, . . . , B; l = 1, 2, . . . ,M (11)

where pil is the measured probability density, B is num-
ber of distribution bins (100 in our case), and L = 20 for
a low-20 ampligram. The entropy for the amplitude dis-
tribution pictured in Fig. 13 is shown in Fig. 14. It may
be seen that the broadened distribution corresponds to
an increase of entropy. However, it must be remembered

Fig. 14. The distribution entropy as a of the fraction of the
maximum wavelet coefficient magnitude for the distribution
graph of Fig. 13

Fig. 15. The distribution shape and the value of entropy: a) pure
Gaussian noise, narrow distribution, low entropy; b) the distri-
bution broadened due to presence of semi-regular components
with different periods, increased entropy; c) strong harmonic
component in the data, decreased entropy

that distinct multiple peaks, if such appear in the distri-
bution, will again decrease the entropy. That is illustrated
in Fig. 15.

The distribution entropy will be used in the present
study as a measure of occurrence of deterministic
structures.

9. Sensitivity of the ampligram method

An interesting problem is the sensitivity of the method;
i.e. what is the smallest amplitude of the deterministic
component which may be detected when immersed in a
pure Poisson-like background. A detailed study using dif-
ferent types of deterministic components was performed.
The results will be published elsewhere, here only a short
summary of relevant results will be given. The Poisson-like
background was generated using the beta-decay event se-
ries. It is assumed in physics that the radioactive decay is a
classical Poisson process. In the present study beta-decay
pulses were counted in a series of 1 s bins. The radioactive
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Fig. 16. Deterministic component added to beta-decay series.
In the present example P = 57 bins and R = 3 events/bin

Fig. 17. Time scale spectrum of beta-decay data with a su-
perimposed deterministic component shown in Fig. 16. The
white vertical line indicates the period of the deterministic
component

source was collimated so that the average counting rate
during the entire 1024 s sample was around 1 event/s.
The deterministic component used in the present example
was of the type shown in Fig. 16, with a period P bins
and a maximum amplitude R counts/bin.

The ampligram and time scale spectrum was calcu-
lated for the synthesized series. The time scale spectrum
is shown in Fig. 17. A logarithmic scale is used on the hor-
izontal axis of time scales. The white line on the diagram
indicates the period of the deterministic component, P =
57 s.

In the demonstrated case the deterministic component
contains about 15% of photons in the background. It has
been found that for average counting rate of 1 event/s
a deterministic component containing 8% of background

photons may still be detected on the time scale spectrum.
The sensitivity of the method seems be dependent on the
average counting rate. Transferring this result to contin-
uous signals it would correspond to detection of a signal
22 dB below the background level.

10. Analysis of simulated photon flux

In the case of X-rays from AGN there might be a physi-
cal source of deterministic variations of the photon flux.
Pacholczyk & Stoeger (1994) propose “building blocks” in
the X-ray photon flux from active galactic nuclei. In the
present study each building block is assumed to be formed
by a Poisson process. A Poisson process may be simulated
(R̊ade & Westergren 1995) using a series of random num-
bers according to the formula

ti = ti−1 −
lnXni

C
(12)

where ti is time of event i, Xni is a random number be-
tween 0 and 1 and C is the Poisson parameter, called also
the process intensity. The event series is then converted
into an event rate plot by counting events in consecutive
time bins. In the present case it is assumed that each block
is a fragment of a Poisson process with the process inten-
sity within each block, C decreasing with time according
to:

C = Cot
−k
j (13)

where Co is the starting process intensity, tj is the time
of the j-th photon measured from the beginning of the
building block and k is the exponent determining the rate
of decay of the block. The simulations were performed as-
suming random values for the number of photons in each
block, NP, the number of building blocks during the sim-
ulation period, NB, and a pair of values for Co and k.
The results of simulations have shown that there will be
a significant difference in the character of time scale spec-
trum depending on if building blocks are superimposed
in a semi-regular manner or randomly. Figure 18 (left di-
agram) shows the time scale spectrum for randomly su-
perimposed blocks (NB = 35, NP = 214, Co = 12.6 and
k = 2.27), while in the right diagram the building blocks
were superimposed in a semi-regular manner (NB = 8,
NP = 238, Co = 5.0, k = 0.615 and the average period
between blocks is 200 ± 40 s). Note the linear scale of
x-axis on both diagrams.

It may be seen that the character of superposition
of Poisson-like building blocks may be studied using the
present method. Also number of building blocks per time
unit may be determined.

11. Conclusions

The ampligram may be considered as an analogy to sig-
nal decomposition into Fourier components. In that case
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Fig. 18. Time scale spectrum of simulated superposition of
building blocks: random (left) and semi-regular (average pe-
riod 200 ± 40 s) (right diagram). Linear scale of x-axis

different components correspond to different frequencies.
In the present case different components correspond to
different wavelet coefficient magnitudes, being equivalent
to spectral densities. A useful property of the ampligram
is that when integrated along the coefficient magnitude
axis, the original signal should be obtained. However, if
the original signal spans over a large range of amplitudes,
the energy leakage into the ampligram band will occur and
the integral of the ampligram will show values larger than
those of the original signal.

The time scale spectrum of the ampligram tells us more
than the original wavelet spectrum does. The time scale
spectrum reveals individual signal components and indi-
cates the statistical properties of each component: deter-
ministic or stochastic. The ampligram and its time scale
spectrum seems to be a useful tool to study processes re-
sulting in a mixture of stochastic and deterministic com-
ponents. The most important point of the method is that
it may be used to remove the influence of the Poisson
statistics in the photon data and in this way to extract
real deterministic luminosity variations. As it is shown by
simulations in Sects. 9 and 10 of this work, the method
is capable to extract weak, deterministic variations em-
bedded in a totally Poisson-like series of events. The en-
tropy of amplitude distributions at the individual levels
of wavelet coefficient magnitude was found to be a useful
measure of the occurrence of deterministic components
in an ampligram. In the case of X-ray luminosity varia-
tions in the AGN it is expected that the described data
analysis technique will provide a conclusive proof of the
existence of building blocks. The efficient decomposition
of the luminosity variation data may be used to study the
deterministic, quasi-periodic phenomena, like tones and
chirps.
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