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SOLVING HYPERBOLIC PDEs USING
INTERPOLATING WAVELETS*

MATS HOLMSTROMT

Abstract. A method is presented for adaptively solving hyperbolic PDEs. The method is
based on an interpolating wavelet transform using polynomial interpolation on dyadic grids. The
adaptability is performed automatically by thresholding the wavelet coefficients. Operations such as
differentiation and multiplication are fast and simple due to the one-to-one correspondence between
point values and wavelet coefficients in the interpolating basis. Treatment of boundary conditions
is simplified in this sparse point representation (SPR). Numerical examples are presented for one-
and two-dimensional problems. It is found that the proposed method outperforms a finite difference
method on a uniform grid for certain problems in terms of flops.
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1. Introduction. Solutions to PDEs often behave differently in different areas.
In acoustics an example is a low-frequency wave, with a localized high-frequency
burst. In fluid dynamics we have shocks, boundary layers, and turbulence. For these
examples the solution can be smooth in most of the solution domain, with small areas
where the solution changes quickly. When solving such problems numerically we would
like to adjust the discretization to the solution. In terms of finite difference methods,
we want to have many points in areas where the solution has strong variation and
few points in areas where the solution is smooth. If we use a Galerkin method, this
corresponds to the representation of the solution having fewer basis functions in the
smooth areas.

Given a wavelet representation of a function

> ssrpan(@) + Y djxthx(@),
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where ¢ ;1 (x) are scaling functions and 1); () are wavelets, the scaling function co-
efficients, s, essentially encode the smooth part of the function, while the wavelet
coefficients, d;, contain information on the functions behavior on successively finer
scales. The most common way of compressing such a representation is thresholding.
We delete all wavelet coefficients of magnitude less than some threshold, e. If the total
number of coefficients in the original representation was N, we have N, significant
coeflicients left after the thresholding. Note that by thresholding a wavelet represen-
tation we have a way to automatically find a sparse representation, and we can also
use this representation to compute function values at any point.

For the above-mentioned examples of solutions of PDEs, N will be much smaller
than N. This is due to the locality of the wavelets. The representation will have
many wavelets in areas where the solution varies but few in the smooth parts. This
sparse wavelet representation has two advantages when solving a PDE numerically.
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First, we need less memory to store the solution since we store N4 coefficients instead
of N. Second, we could save computational time if we can exploit this sparsity when
differentiating and multiplying functions. Ideally we would like the number of floating
point operations needed to perform these operations to be proportional to Ny, with
a small constant.

Several different approaches have been considered for solving time-dependent
PDEs exploiting the sparsity of a wavelet representation. One way is to approximate
the operators of the PDE in a wavelet basis. This can be done with a collocation
method, as done by Bertoluzza [2], or with a Galerkin method, as done by Bacry,
Mallat, and Papanicolao [1] and by Holmstrém and Waldén [12]. The operators will
be sparse in the wavelet basis but N, needs to be very small compared to N for
the methods to be efficient. This is especially true for nonlinear operations such as
multiplication of functions (as was noted, in [12] and others).

To overcome this problem one can choose an approach similar to what is done
when using pseudospectral methods. Then one uses both the physical representation
of the solution and the wavelet representation. One can then do multiplication in the
physical space and differentiation in the wavelet space, as is done by Beylkin and
Keiser [4] with coiflets; it can also be done by using collocation methods by Charton
and Perrier [5], Frohlich and Schneider [9], Ponenti and Liandrat [15], and Vasilyev
and Paolucci [16]. With this approach one transforms back and forth between the
physical domain and the wavelet domain in each time step, which introduces some
overhead, especially if the support of the wavelet is large.

Again, another approach is to do all operations in the physical representation
of the solution and use only wavelets to construct and update the representation.
This promises low computational overhead, since we are working with point values in
the physical representation. Along these lines, Jameson [14] uses wavelets for finding
where to refine the grid in a finite difference method and then uses finite difference
stencils on an irregular grid. Waldén describes a filter bank method in [18]. Also,
Harten [11] and Gerritsen and Olsson [10] have used wavelets to localize where to
apply different types of finite difference methods.

In this paper a representation in physical space, the sparse point representation
(SPR), is introduced. It is based on an interpolating wavelet transform using polyno-
mial interpolation on dyadic grids. The interpolating wavelet transform has also been
used in a Galerkin method for solving elliptic problems on the interval by Bertoluzza,
Naldi, and Ravel [3]. A feature of the chosen basis is the one-to-one correspondence
between point values and wavelet coefficients. Also the treatment of boundary condi-
tions is simplified in the SPR. Centered finite differences are used for approximating
space derivatives, and we then use a Runge-Kutta method to advance the solution
in time. Numerical examples are presented for the advection equation and Burgers’s
equation in one and two dimensions, with periodic and nonperiodic boundary condi-
tions.

A problem with many adaptive wavelet methods, as noted in [5, 9], is that al-
though multiplication and differentiation are done in O(N;) time, the constants can
be large. Using the SPR with finite differences we show, by numerical examples, that
these constants are small.

In section 2 we describe the interpolating wavelet transform and introduce the
sparse wavelet and point representation, along with operations on these representa-
tions, and we also describe the time stepping method. In sections 3 and 4 we present
the results of numerical experiments in one and two dimensions for linear and nonlin-
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Fic. 2.1. Exzamples of point positions on dyadic grids.

ear problems.

2. Theory. Wavelets are usually introduced by defining scaling functions, ¢; &,
wavelets, 1, 1, and the associated function spaces V; and W;. Since we are using an
interpolating wavelet transform, it is possible to define instead the transform in terms
of interpolation on dyadic grids. First we present the interpolating subdivision scheme
by Deslauriers and Dubuc [6] and Dubuc [8].

Assume that we have a set of dyadic grids on the real line,

Vi={zr€R:z;, =2k keZ}, jEL

The locations of points on such dyadic grids are illustrated in Figure 2.1. Given func-
tion values on Vj, {fjr}trez, where f;i = f(z;r), a function defined on the grid
points in V;, we would like to extend them to all points fji1x in Vjii. The inter-
polating subdivision scheme is an algorithm to accomplish this. The even-numbered
grid points 41 21, already exist in V}, and the corresponding function values are kept
unchanged. Values at the odd-numbered grid points ;41,2541 are computed by poly-
nomial interpolation from the values at the even-numbered grid points. The degree
of this interpolating polynomial is p — 1, and we say that the interpolation is of order
p. The order is chosen to be even to make the interpolation symmetric. The adaption
to boundaries is simple. We use the closest points inside the boundary on the coarser
grid to define the interpolating polynomial. In the multidimensional case we use bases
constructed by tensor products of the one-dimensional V; spaces.

Used recursively, the interpolating subdivision scheme generates function values
on a fine grid, given values on a coarse grid. If we wanted to do the opposite, go from a
fine to a coarse grid, we could just throw away half of the grid points at each level, but
we would then lose information. Instead we can, at each level, for odd-numbered grid
points, compute the difference between the known function value and the function
value predicted by the interpolation from the coarser grid. We call these differences
in function values wavelet coeflicients, d; . The computation of a wavelet coefficient
is illustrated in Figure 2.2 for the cubic case, p = 4. Repeating this recursively we
have an algorithm for computing the full wavelet representation from function values
on a fine grid. In Figure 2.3 we have an illustration of such a wavelet representation.
This interpolating wavelet transform was introduced, independently, by Donoho [7]
and Harten [11].

How do we reverse the process? The inverse transformation simply takes the levels
in the opposite order and adds the correction, d; 1, to the interpolated prediction. This
transform is a special case of the well-known fast wavelet transform.

The reason that we are interested in wavelet methods in the first place is the
possibility of compressing representations of functions in a wavelet basis. This is usu-
ally done by the thresholding of the wavelet coefficients; i.e., we remove all wavelet
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Fi1G. 2.3. Ezample of a wavelet representation where each point, except on the coarsest grid,
corresponds to a wavelet coefficient.

coefficients whose magnitude is smaller than some threshold, e. If we started with N
coefficients on a fine grid we have N coeflicients after thresholding.

Operations such as differentiation and, especially, multiplication can be costly
when done in a wavelet basis. On the other hand, the wavelet basis is needed for
thresholding the representation into a sparse representation. Ideally we would like to
transform our N, wavelet coefficients to N point values, instead of the N points we
get if we do an ordinary full inverse transform on our wavelet representation. Such
a transform exists for the interpolating wavelets that we have described, due to the
one-to-one correspondence between wavelet coefficients and point values. Consider
a sparse wavelet representation. We do the inverse transform, though only for those
points that correspond to the N significant wavelet coefficients. If any point value is
needed that does not exist, we interpolate the value from a coarser scale, recursively.
The algorithm will terminate since we have all function values on the coarsest grid.
We call this the inverse sparse wavelet transform that leads to a SPR. The SPR is
the set of function values retained after thresholding, i.e., all the function values on
the coarsest scale and the function values whose corresponding wavelet coefficients’
magnitude is greater than the threshold, e.

Note that the SPR is not a representation in a basis; it is just a collection of point
values. Given an SPR, we can also do the reverse—reconstruct the corresponding
sparse wavelet representation. This sparse wavelet transform only requires O(Nj)
flops, with a small coefficient. This is the heart of our method and the reason for our
choice of scaling function and wavelet. We also note that the SPR can be computed
without explicitly forming a sparse wavelet representation. This is done by storing
the point values in the SPR instead of the wavelet coefficients when computing the
wavelet transform. The wavelet coefficients are then computed only to decide whether
the corresponding point value is to be included in the SPR.

When forming the SPR we can start with function values on a coarse grid and
add points on the next finer grid that corresponds to points with wavelet coefficients
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whose magnitude is larger than e. This is done recursively. The advantage is that
only N, function values are involved, instead of the N function values needed in a full
transform. The disadvantage is that we might miss fine scale features. We might also
get fictitious large scales if the function only has high-frequency components. This
can be avoided by choosing the coarsest grid fine enough to capture all the features
of the function.

If we want to multiply two SPRs we simply multiply the point values. If a point
value is missing, it is again interpolated from a coarser scale in the SPR.

For differentiation we use a finite difference stencil of order p (the same order as
that of the representation). For each point where the derivative is needed, we locate
the closest point in the SPR and choose the distance to that point as the step length,
h. We then apply a centered finite difference stencil of order p. Again, if any point
is missing we interpolate the value from a coarser scale. If any point in the stencil
is located outside the boundary, we use a one-sided stencil, of the same order as the
centered one, such that all points are inside the boundary, just as we did for the
wavelet transform on an interval.

We now put all the pieces together and describe how to solve the initial boundary
value problem

uy = Pu, u=u(z,t) € R™, t >0, reQCR?,
u(z,0) = up(z), with boundary conditions on 02,

by the SPR method. Here 0f) is the boundary of 2, a box in R™. We assume that P
can be evaluated in terms of repeated differentiation, multiplication, and summation.
We choose to separate the time and space discretizations by using the method of lines,
thus we will only discuss the space-discretization. The resulting system of ODEs can
then be solved by any standard ODE solver. We transform, threshold, and inverse
transform the initial function ug(z) and have an SPR at t = 0. The set of retained
coefficients will now need to change over time so we update the SPR after every time
step. This means that we make all computations in the SPR, except after every time
step, when we threshold. To allow the basis to change we have to extend the SPR after
the thresholding. First, in space, we add points corresponding to neighbor wavelets in
the SPR. The number depends on the PDEs wave propagation speed. Then the basis
is able to adjust when the solution is moving. Second, in frequency, we add points
corresponding to wavelets on the next finer scale to the SPR. This refinement allows
the development of, e.g., shocks in the solution. The boundary conditions are applied
after each time step.

We note that for systems of PDEs we can choose how to represent the different
components of solution. We could use the union of the components’ SPRs, but maybe
more interesting is to let each component have a different SPR. We can then interpo-
late the needed point values from the SPRs. This could lead to savings in the memory
needed to store the solution.

An overview of the algorithm follows:

1. Transform and threshold the initial function ug to an SPR and set ¢ « 0.

2. Extend the SPR in space and frequency by adding points corresponding to
neighbor wavelets and wavelets on the next finer scale. This is to allow for features
of the solution that move or develop in time.

3. The discretization of the initial boundary value problem is a system of ODEs
that is advanced to time t < t + At by any standard method, e.g., a Runge-Kutta
method. Here At is related to the smallest distance between points in the SPR by a
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Fic. 3.1. (a) The test function f(x) = sin(2rz) + exp(—a(z — 1/2)2) when o = 10%, (b) the
square of the test function, and (c) the derivative of the test function.

CFL-condition.
4. The SPR is thresholded.
5. Goto 2.

3. One-dimensional numerical experiments. We now turn to some numeri-
cal examples in one dimension. In section 3.1 we study some properties of the SPR on
the unit interval. We examine the error of the representation itself and the error aris-
ing when multiplying and differentiating functions. Then we apply the SPR method
for solving PDEs to a linear, constant coefficient, advection equation in section 3.2.
In section 3.3 we then solve a nonlinear problem: Burgers’s equation.

3.1. Representation, multiplication, and differentiation. First we choose
a test function that should be well compressed in a wavelet basis, in this case a function
on the unit interval that is smooth in most of the domain with a small interval of
sharp variation. The function is a superposition of a sine function and a Gaussian and
is displayed in Figure 3.1 along with its square and derivative.

We will now examine the error arising when approximating this function by its
SPR. Since the SPR consists of point values, it is natural to measure the error in the
maximum norm. We introduce the norm

|9lee = Joax, lg(z)].

Denote by Pj f the thresholded interpolant of f (x) in Vj. Let us define the interpo-
lation P¢f = P5f, where j is chosen large enough such that the SPR is the same
for P5f and P, f. We are interested in the error’s dependence on our threshold
parameter e. In what follows, ¢; denote constants for a given f. Donoho [7] has shown
that, for smooth enough f,

(3.1) |f =P floo < 16

(actually, part of the constant ¢; depends on -log, €), and the number of significant
coefficients, Ny, dependent on € is

(3.2) N, < coe™ /P
or, equivalently,

(3.3) e < ANJP.
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Combining (3.1) and (3.2) we have a bound on the error in terms of N,
(3.4) |f = P floo < esN;P.

This means that our sparse interpolating wavelet representation is of order p in the
number of significant coefficients, Ng. We have verified these relations numerically for
the test function shown in Figure 3.1.

When thresholding an SPR we need to interpolate values at all points that cor-
respond to wavelet coefficients. What amount of work will be associated with this
interpolation? Interpolating a function value requires 2 and 6 flops when p = 2 and
p = 4, respectively, if the points from which we interpolate are included in the SPR.
Otherwise we have to interpolate the needed function values recursively. This will in-
crease the total flop count. On the other hand, we have function values at the coarsest
grid, corresponding to scaling function coefficients, that need not be interpolated at
all. This will decrease the total flop count. Numerical experiments suggest that we
never need more than 2 and 6 flops per coefficient—thus thresholding is not expensive,
even if done recursively.

Let us now turn to multiplication of functions. To avoid, for now, the question of
how to choose the sparse representation of the result, we consider taking the square
of our test function by squaring the point values in the SPR. The square of the test
function was shown in Figure 3.1. Examining the error of the square approximation
we find that, using (3.1) and (3.3),

(3.5) 12 = (Pf)loe S |f+P Sl |f = P floo < E1e < NP

What happens when we differentiate a function? Will the approximate derivative
be of order p? In contrast to representing and squaring a function, the error at the
points in the SPR will not be exactly zero when differentiating a function. Therefore
we can choose to measure the error in maximum norm over the points in the SPR.
We introduce the norm

|g|6,00 = max |g(x]}k)|7
Tj k

where ;1 are the points in the SPR. The pointwise error in the derivative approxi-
mation will then be

|f/ - Dppef|6,00a

where D), is the finite difference approximation of the derivative of an SPR of order
p, as described in section 2. We have a truncation error for the finite difference ap-
proximation of the first derivative of the order h?. The function values used in the
finite difference approximation also have an error of order h? due to the interpolation.
We divide by h when forming the finite difference approximation leading to a total
error of order h?~!. We have that h? ~ € since the interpolation error is bounded
by epsilon. Using (3.3) we have that h ~ N;!; thus the first derivative error will
be proportional to N;P*L. We lose one order of approximation when differentiating
the SPR compared with the order of the representation. The derivative of the test
function was shown in Figure 3.1. Now we numerically examine the pointwise error
of the approximation D,P¢f as a function of Ny when p = 2 and p = 4 as shown in
Figure 3.2. We find that the slopes of the graphs are approximately —1.5 and —3.5.
We seem to lose only about half an order of approximation when differentiating the
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F1G. 3.2. The pointwise error for the approzimation of f' as a function of Ns (solid lines) when
p =2 (circles) and p = 4 (stars) for o = 10*. The dashed lines are the corresponding thresholds, e,
as a function of Ns.

SPR. We also note that the error is approximately 1000e and 100e when p is 2 and 4,
respectively, for this specific function.

What is the work associated with differentiating an SPR? At each point we have
p points in the finite difference stencil. If a point is missing, we have to interpolate
from a coarser scale. If we, for the moment, disregard the work associated with this
interpolation, we need 2N, flops when p = 2 and 6N, flops when p = 4. In numerical
experiments we found that for p = 2, we approach 2 flops/N; as Ny grows (e decreases).
When p = 4, we approach 7 flops/N;. Comparing this with the above stated work
estimates of 2 and 6 flops/Ns, we conclude that the additional work for recursively
interpolating function values during differentiation is small.

3.2. A linear problem. In this section we examine the performance of the
proposed SPR method when solving a linear advection equation on the unit interval.
Specifically, we will solve

Up = Uy, 0<x <1, t>0,
(3.6) {u(z,O) = up(x), u=u(x,t), u(1,t) = up(t).

The left boundary is an outflow boundary and the right boundary is an inflow bound-
ary. The solution, u(x,t) = uo((z + t) mod 1), is a periodic translation of the initial
function. Note that the boundary conditions are chosen so that the solution will be
the same as for a problem with periodic boundary conditions. As an initial function
we choose the function

uo(x) = sin(27zx) + em(@=1/2),

This is the test function used in the previous section, shown in Figure 3.1. This mostly
smooth function with a peak will test our method’s ability to follow features of the
solution that move in time. In this case the grid refinement should follow the peak in
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F1G. 3.3. The sparse wavelet representation of the solution: at t =0 (a), at t = 0.5 (b), and at
t=1(c) when p=4, e=10"%, and o = 10%.

the solution. After space discretization, forming the SPR, we have a system of ODEs
to solve. We solve this system using the classical fourth-order Runge-Kutta method.
Since we are interested in the error from the space discretization we choose the time
step small enough that this error dominates the total error. The time step, At, is
chosen as At = khuyin, where hp, is the smallest distance between points in the
current SPR. In all the experiments of this section & = 0.5 was used.

The sparse wavelet representation at different times is displayed in Figure 3.3. We
see that the refinement follows the peak in the solution. If we examine the number
of significant coefficients as a function of time, we find that N, is oscillating around a
mean value of 217. That N, does not increase significantly over time shows that the
refinement automatically follows the peak in the solution.

We now compare the error at ¢ = T with the work needed to compute the solution
for different values of e. We also make a comparison with a finite difference method
on a uniform grid. First compare some work estimates for a finite difference method
of order p on a uniform grid. Let N = 1/h be the number of points in the space
discretization. Let m = T /At be the number of time steps, where T is the final time
of the solution. The amount of work in flops is then

flops ~ m - N ~ N2,

since we have a CFL-condition, At ~ h ~ 1/N. Assuming that the time discretization
is at least as accurate as the space discretization we can estimate the error at time T,
e(T), as

[e(T)|oo ~N7P or |e(T)]oo ~ (ﬂops)_p/Q.

Thus we have an estimate of the error at T in terms of the number of points, N, or
the work in flops. For the SPR method, instead of N we have Ny and the time step
At ~ hpin. Due to this dependence on hpyi, we no longer have any simple bound on
6(T) oo

In Figure 3.4 |e(1)|c,0 is plotted as a function of the time average of Ny for the
SPR method when p = 4 and for a fourth-order finite difference method as a function
of the number of grid points. The slope for the finite difference method is -4; for the
SPR method the slope is similar, thus the SPR method seems to be of the same order
as the finite difference method. We also note that the error is approximately 1000e
for this specific problem.
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Fic. 3.4. The error at t = 1 for the SPR method when p = 4 (solid line with stars) and a
fourth-order finite difference method (circles) as a function of the time average of the number of
significant coefficients. The initial function has o = 10°. The dashed line is the threshold for the
SPR method, €, as a function of Ns.
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Fic. 3.5. The error at t = 1 for the SPR method when p = 4 (stars) and a fourth-order finite
difference method (circles) as a function of Mflops (Megaflops used in the computation). The initial
function has o = 105.

In Figure 3.5 we plot |e(1)|¢ o as a function of the amount of work in flops. Here
also, the orders of the methods are roughly similar, thus the SPR method, for this
specific problem when p = 4, seems to preserve the order of the work required when
we want accurate solutions.

3.3. A nonlinear problem. The linear advection problem in the previous sec-
tion was a test of the SPR method’s ability to follow features in the solution auto-



SOLVING PDEs USING INTERPOLATING WAVELETS 415

1 /. 1 Sseocy
. e}
0.5 . 0.5 o
(@]
0 0 o
. R o
-0.5 . -05 o
. oo
1 I/ 1 OQfYYY\
0 0.5 1 0.499 0.5 0.501
X X

(a) (b)

FIG. 3.6. The solution at t = 0.25 (a) and a blowup around the shock (b) when p = 1074,
p=4,e=10"5, and k = 0.25.

matically. Now we will test the methods ability to automatically refine the SPR when
features develop in time. We will solve the nonlinear Burgers’s equation on the unit
interval with Dirichlet boundary conditions,

(3.7) Ug + Uy = UlUgy, 0<z <1, t>0,
’ w(z,0) = up(z), u = u(x,t), u(0,t) = u(1,t) = 0.

The initial function is a sine wave,
uo(z) = sin(2nz).

The solution will develop a sharp gradient at = 1/2, which will reach its maximum
around ¢ = 0.25 when the extrema of the initial function have advected to z = 1/2
and the solution is close to a saw-tooth function when the viscosity, u, is small. Again,
this is a function that should be well compressed in a wavelet basis since it is smooth
in most of the domain, except for a small interval of sharp variation. This will be a
good test of our methods ability to refine the representation frequency-wise, that is,
the ability to refine the grid around = = 1/2 as the shock develops.

The computed solution, using the SPR method, at ¢ = 0.25 is shown in Figure 3.6
when o = 1074, p = 4, € = 107°, and k = 0.25. That the SPR method is able to
refine the grid around & = 1/2 as the shock develops is evident in Figure 3.7. From
a representation in Vi at ¢ = 0, we have a representation in V4 at ¢ = 0.25; i.e, the
grid is 2% = 256 times finer.

4. Two-dimensional numerical experiments. Now we will examine the SPR,
method’s performance for some two-dimensional test problems. First we examine the
error when representing and differentiating a two-dimensional function in section 4.1.
In section 4.2 we solve a linear advection problem on the unit square. Finally we
solve a nonlinear problem in section 4.3, a two-dimensional counterpart to the one-
dimensional Burgers’s equation.

In all two-dimensional numerical experiments we refine one extra level for all
significant coefficients. All experiments are done in the cubic basis, p = 4. The
boundary conditions are periodic for all two-dimensional test problems.
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Fi1G. 3.7. The sparse wavelet representation of the solution: at t = 0 (a) and at t = 0.25 (b)
when p=10"%, p=4, e =1075, and k = 0.25.

4.1. Representation and differentiation. Multidimensional bases are con-
structed as tensor products of the one-dimensional V; spaces. The implementation of
the two-dimensional transform is then the one-dimensional transform applied first to
rows and then to columns of the grid. Some adjustments of the method are needed
in two dimensions. First we choose the space step hmin as the distance along the z-
or y-axis to the closest point. As in the one-dimensional case, we recursively evaluate
function values that are not in the SPR, but we also store the evaluated values to
reduce the flop count. We now check that the order relations that we verified in the
one-dimensional case hold in two dimensions. As a test function we use a function
that is smooth and slowly varying, except for a small region,

f(z,y) = e~ (@12 +w=1/2%) _ 9. sin(27x) sin(27y),

where the width of the peak is controlled by the parameter a.. The results of numerical
experiments are consistent with the relations

v/ N, < coe MP
and  |f =P fleo < c3(V/Ns)7?,

which are the two-dimensional counterparts to the one-dimensional estimates, (3.2)
and (3.3). For the error in the derivative approximation we seem to lose half an order
of approximation, as in the one-dimensional case.

The number of flops per significant coefficient for computing the derivative is at
least 6, but it will be higher since we have to interpolate nonexistent function values
from coarser grids. To reduce the work, as mentioned above, we temporary store every
evaluated function value to avoid making the same interpolation twice. The number
of flops per significant coefficient for computing the derivative is found to be around
13, higher than the lower bound of 6 but still a small number.

4.2. A linear problem. As in the one-dimensional case, we first examine a
linear advection problem. Again it will test the method’s ability to follow features of
the solution. We will use periodic boundary conditions on the unit square to avoid
influences from boundary conditions. The problem can be stated as

(@1) Up = Ugp + Uy, 0<2,y<1, t>0,
u(z,y,0) = ug(z,y), u(1,y,t) = u(0,y,t), u(z,1,t) = u(z,0,1).
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Fic. 4.1. (a) The SPR att = 0 (Ns = 2072) and (b) the SPR at t = 1 (Ns = 1865) when
e=10"3, =200, J =7, and k = 1.
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FIG. 4.2. The number of significant coefficients as a function of time when e = 1073, o = 200,
J=17 and k=1.

The solution is a translation of the initial function with speed v/2, u(z,y,t) = uo(z +
t mod 1,y + ¢t mod 1). The initial function is the smooth function with a localized
spike,

uo(x,y) = e (E=1/2"+(=1/2%) _ (2 sin(27x) sin(27y).

The SPR at t = 0 and at ¢ = 1 is displayed in Figure 4.1. We see that the points
are still concentrated around the spike at ¢ = 1. Thus the grid refinement follows
the peak in the solution. We see that the refinement somewhat trails the peak. This
is probably due to the dispersive errors of the underlying finite difference method.
The important observation is that this trailing “tail” does not grow in time. This
observation is verified if we examine the time evolution of the number of significant
coefficients that are plotted in Figure 4.2. It oscillates, but the average is constant
over time.

4.3. A nonlinear problem. Now we would like to examine the ability of the
SPR method to refine the representation in two dimensions when gradients develop
in the solution. We examine the following two-dimensional counterpart to the one-
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FIG. 4.3. (a) The initial function and (b) the solution at t = 0.09 when ¢ = 1073, u = 1072,
and J =T17.

dimensional Burgers’s equation,®

(4.2) U + Uy + ty) = w(tgy + Uyy), 0<z,y<l, t>0,
. u(w,y,O) :Uo(%y)a U(l,y,t) :U(anat)v ’U,(l',].,t) :u(xvovt)v

where the boundary conditions are periodic. If we choose the initial function as a
two-dimensional sine wave,

ug(x,y) = sin(2m(z +y)),

the solution along all lines parallel to the line x = gy will be the solution to the
one-dimensional Burgers’s equation, time dilated by a factor of 2. The equation is
two-dimensional in the sense that shocks will develop along lines at a 45 degree angle
to the x-axis. The gradient in the shock will reach its maximum at time ¢ = 0.125
when the extrema of the sine wave have advected into the shock. In Figure 4.3 the
initial function and the solution at ¢t = 0.09 are displayed when € = 1073, p = 1072,
and J = 7. The SPRs at t = 0 and ¢t = 0.09 are shown in Figure 4.4. We see that
a coarse grid is sufficient to represent the everywhere smooth solution at t = 0. At
t = 0.09 the shock has started to develop, and the grid is refined around the shocks
but coarsened elsewhere. We have seen that the SPR method is able to adapt the
two-dimensional grid to developing features of the solution.

5. Conclusions. We have presented a method for adaptively solving hyperbolic
PDEs. The adaptability is achieved by using an interpolating wavelet basis to sparsely
represent the solution of the PDE. The representation automatically adapts when the
solution changes over time. This adaption works both for features that are moving
and for features that develop over time, such as shocks. The sparse representation
leads to significant savings in the number of flops needed to achieve a solution with
a certain accuracy in maximum norm. Since we in the current implementation have
used a nonsparse data structure, no comparison was made in terms of CPU time.
By using a sparse data structure the method should be competitive also in CPU

IThis is the scalar counterpart to the two-dimensional system called the bidimensional Burgers’s
equation by Ponenti and Liandrat [15].
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Fic. 4.4. (a) The SPR att = 0, N; = 1024 and (b) the SPR at t = 0.09, Ny, = 4352 when
e=10"3, u=10"2, and J = 7.

time. If a sparse data structure is used to store the SPR, we also reduce the memory
requirement. The method is shown to out perform the finite difference method for
these problems, in terms of flops for certain functions. These functions are those that
can be well compressed in a wavelet basis, e.g., a function that is smooth in most of
the domain with small areas of sharp variation. We have shown that multiplication,
differentiation, and boundary conditions can be handled in a time that is proportional
to the number of significant coefficients. This SPR method is easily extended to
higher dimensions and systems of PDEs. Finally, the SPR method is easy both to
implement and understand. An area of future work is implementing a suitable sparse
data structure for the SPR.
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